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Analyticity of the Planar Limit
of a Matrix Model

Stavros Garoufalidis and Ionel Popescu

Abstract. Using Chebyshev polynomials combined with some mild combi-
natorics, we provide an alternative approach to the analytical and formal
planar limits of a random matrix model with a 1-cut potential V . For
potentials V (x) = x2/2 − ∑

n≥1 anxn/n, as a power series in all an,
the formal Taylor expansion of the analytic planar limit is exactly the
formal planar limit. In the case V is analytic in infinitely many vari-
ables {an}n≥1 (on the appropriate spaces), the planar limit is also an
analytic function in infinitely many variables and we give quantitative
versions of where this is defined. Particularly useful in enumerative com-
binatorics are the gradings of V, Vt(x) = x2/2 − ∑

n≥1 antn/2xn/n and

Vt(x) = x2/2−∑
n≥3 antn/2−1xn/n. The associated planar limits F (t) as

functions of t count planar diagram sorted by the number of edges respec-
tively faces. We point out a method of computing the asymptotic of the
coefficients of F (t) using the combination of the wzb method and the reso-
lution of singularities. This is illustrated in several computations revolving
around the important extreme potential Vt(x) = x2/2 + log(1 − √

tx)
and its variants. This particular example gives a quantitative and sharp
answer to a conjecture of ’t Hooft’s, which states that if the potential is
analytic, the planar limit is also analytic.

Mathematics Subject Classification (1991). Primary 57N10;
Secondary 57M25.

1. Introduction

1.1. Formal Matrix Models and Their Planar Limit

Matrix models are integrals of exponentiated potential functions over finite
dimensional vector spaces (such as the vector space of Hermitian matrices

S.G. was supported in part by NSF. I.P. was supported in part by the Marie Curie Action
Grant Nr. 249200.
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of size N) that were studied in the seventies as an approximation of Quan-
tum Field Theory in a 0-dimensional space-time. Matrix models at fixed value
of N and their behavior when N is large is useful in a variety of problems
that include enumerative problems of ribbon graphs, random two-dimensional
gravity, triangulations of surfaces, random matrices, topological string the-
ory, intersection theory on the moduli space of curves and perturbative gauge
theory; see [7,11,13,14,29–31,38].

Matrix models come in two flavors: formal and analytic. Formal matrix
models (FMM in short) are easy to define, using formal Gaussian integration.
The input of a formal matrix model is a formal potential V

V(x) =
x2

2
−

∞∑

n=1

an

n
xn ∈ A[[x]], (1)

which lies in a formal power series ring A[[x]], where A is the completed ring

A = Q[[a1, a2, a3, . . .]]. (2)

The partition function Z and the free energy F of the formal matrix model is
given by the following formal integral and its logarithm, respectively

Z =

∫
HN

dM exp(−NTr(V(M)))
∫

HN
dM exp(−NTr(M2/2))

, F = log Z ∈ N2A[[1/N2]] (3)

where
• HN is the vector space of Hermitian matrices of size N ,
• Tr(M) denotes the trace of a matrix M ,
• The meaning of the formal integration is the following: expand

e−NTr(V(M)+M2/2) as formal power series in A[[N,Tr(M),Tr(M2), . . .]]
and integrate coefficient-wise. This operation produces a well-defined ele-
ment of N2A[[1/N2]].

So, we can write

F =
∞∑

g=0

N2−2gFg, Fg ∈ A. (4)

Fg ∈ A is called the genus g-limit of the formal matrix model. We can expand
Fg in terms of monomials

Fg =
∑

λ

cλ,gaλ

where the sum is over the set of all partitions λ = (1n12n2 · · · ), and aλ =
∏

j a
λj

j

and cλ are rational numbers. Fg enumerates connected ribbon graphs of arbi-
trary valency on a connected, oriented surface of genus g; see [6,7,28,33].
More precisely, it follows by Wick’s theorem that cλ is the weighted sum of all
connected ribbon graphs (weighted by the inverse of the order of the automor-
phism group) of genus g that have nk vertices of valency k; see [28,33]. When
g = 0,F0 is the planar limit of the formal matrix model. The planar limit
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depends on the formal potential V, and if we want to stress this dependence,
we will use the notation F0,V . As an example, when

V4 =
x2

2
− a4

4
x4

the coefficients of the formal power series F0,V4 ∈ Q[[a4]] counts the weighted
sum of connected planar 4-valent ribbon graphs. From the definition of F0,V4 ,
one can compute several terms of the power series F0,V4 , by hand or by
machine. The pioneering work of [6,7] gave an exact formula for the power
series F0,V4 using potential theory:

F0,V4 =
1 − 36a4 + 162a2

4 + (1 − 30a4)
√

1 − 12a4

432a2
4

+
1
2

log
(

1 − √
1 − 12a4

6a4

)

∈ Q[[a4]]

The computation of [6,7] was lacking rigor, and several years later their method
was justified by using potential theory and the Riemann–Hilbert method; see
[12,16]. In the present paper, we give an independent proof, using mostly
techniques from real analysis and elementary potential theory. In addition,
we describe explicitly the analyticity properties of F0 with sharp results, see
Theorems 1.1 and 1.2 below.

As a notational convention, we will use caligraphic symbols V,R,S,
F0, . . . for formal matrix models and straight symbols as V,R, S, F0, . . . for
the analytic matrix models.

1.2. Analytic Matrix Models and Their Planar Limit

Let us now define the analytic matrix models (AMM in short). An admissible
potential V (x) is a function V : R −→ R which is lower-semicontinuous, and
grows sufficiently at infinity, i.e., satisfies

lim
|x|→∞

V (x)
2 log |x| > 1. (5)

For an analytic matrix model with an admissible potential V define

IV = − lim
N→∞

1
N2

log
∫

HN

exp(−NTr(V (M)))dM

= inf
μ∈P(R)

{∫

V (x)μ(dx) −
∫∫

log |x− y|μ(dx)μ(dy)
}

, (6)

where P(R) is the set of all probability measures on R. The second equality in
the above equation follows for example from [10,23].

In the case V (x) = x2

2 − ∑
n≥1

anxn

n is an admissible potential we then
define the analytic planar limit as

F0,V =
3
4

− IV. (7)

We will call F0,V and IV the the analytic planar limit.
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Figure 1. A graphical interpretation of b, c and R,S in terms
of the endpoints of the support of the equilibrium measure

As we already mentioned, this formula allows one to reduce the problem
of the planar limit to the investigation of what is known in the literature as
the logarithmic potential with external fields (Fig. 1).

A 1-cut potential V is an admissible potential whose equilibrium measure
has support in a single interval [b − 2c, b + 2c]. Following the notation of [4],
we will use the change of variables (see Fig. 1 for a graphical representation)

(b, c2) = (S,R). (8)

It turns out that in the case V is a 1-cut potential (plus some nondegen-
eracy), and Va is an analytic perturbation of V , then the endpoints and the
planar limit depend analytically on a.

An admissible potential V is even if it satisfies V (x) = V (−x) for all
x ∈ R. For even 1-cut potentials, the equilibrium measure of V is centered at
b = 0.

1.3. Analyticity of The Planar Limit

Analyticity of functions in infinitely many variables is well defined and under-
stood on functions defined on �1 spaces (see [26] and [36]). In our case we need
to define a weighted version of �1 space. To this end, let r > 0 be a positive
number, and for a complex-valued sequence a = {an}n≥1 ⊂ CN, consider its
�1r norm

||a||r =
∞∑

n=1

|an|rn. (9)

Now, consider the following �1 type spaces

�1r(N) = {a = {an}n≥1 ⊂ CN : ||a||r < ∞}
�1r(2N) = {a = {an}n≥1 ∈ �1r(N) : a2n = 0, n ≥ 1}.

Let Br and Bev
r denote the open balls of radius 1 in �1r(N) and �1r(2N), respec-

tively.
Now consider S ⊂ RN to be the set of sequences a = {an}n≥1 ∈ RN such

that

V (x) =
x2

2
−
∑

n≥1

anx
n

n

is a 1-cut admissible potential which is analytic near 0. Using Eq. (7) we can
define a map F0,V

F0 : S −→ R. (10)

Likewise, we have a map F ev
0 : Sev −→ R.
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We use here the definition of [26,36] for an analytic function on �1r(N)
which essentially means that the Taylor series in infinitely many variables
converges.

Theorem 1.1. The maps F0, R and S (resp. F ev
0 , Rev and Sev) uniquely extend

to analytic functions on B1/
√

12 (resp. Bev
1/

√
8
).

Our next theorem identifies the planar limit of the formal and analytic
matrix model. Since the map F0 from (10) is analytic at 0 ∈ �1r(N), its Taylor
series regarded as a formal power series is given by

F0 =
∑

λ

cλaλ ∈ A (11)

where the sum is over the set of partitions (including the empty one), cλ ∈ Q

and A is given in (2). Consider the formal power series (R,S) ∈ A2 defined in
Sect. 1.4 below.

Theorem 1.2. We have

R = R, S = S, F0 = F0. (12)

What this means is that, if the analytical procedures are taken formally,
one recaptures the planar limit of the formal matrix models.

Theorems 1.1 and 1.2 confirm a conjecture of ’t Hooft for the planar
limit of matrix models. ’t Hooft’s conjecture is motivated by perturbative
gauge theory ideas whose Feynman diagrams are ribbon graphs, and asserts
that F0(V(x)) should be an analytic function at x = 0 when V(x) is analytic
at zero; [38]. For a proof of ’t Hooft’s conjecture for the case of Chern–Simons
gauge theory, see [21].

A natural problem is to extend Theorem 1.1 to all genera g.

Problem 1.1. Show that for all g ≥ 0,Fg (resp., Fev
g ) is the Taylor series of an

analytic function on B1/
√

12 (resp. B1/
√

8).

This may be achieved using [1,18].

1.4. Two Gradings for The Planar Limit

The formal planar limit F0 ∈ A enumerates planar ribbon graphs of arbitrary
valency, and it is closely related to two other formal power series (R,S) which
are uniquely determined by the system of non-linear equations

{
R = H1(R,S)
S = H2(R,S)

(13)

where

H1(R,S) = 1 +
∑

n≥1

an

∑

j≥1

(
n− 1
j − 1

)(
n− j
j

)

RjSn−2j (14)

H2(R,S) =
∑

n≥1

an

∑

j≥0

(
n− 1

2j

)(
2j
j

)

RjSn−2j−1 (15)
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Equation (13) always has a unique solution in (R,S) ∈ A2 that satisfies R ∈
1 + A+ and S ∈ A+, where A+ are the formal power series in the variables
an with no constant term. Moreover, it is easy to see that this unique formal
solution has integer coefficients.

An enumerative interpretation of the coefficients of (R,S) is given in [4],
which in particular implies that they are natural numbers. An analytic inter-
pretation of (R,S) is that they determine the position of the interval of a 1-cut
analytic matrix model; see Sect. 6.

Enumerative combinatorics dictates two gradings on the set of variables
an, the edge grading dege(an) and the face grading degf(an) defined by

dege(an) =
n

2
, degf(an) =

n

2
− 1. (16)

Given an element H ∈ A, let He ∈ A[[t1/2]] and Hf denote the result of
substituting an by ant

n/2 and ant
n/2−1 respectively. For example, for the for-

mal potential V(x) from Eq. (1) we have

Ve(x) =
x2

2
−

∞∑

n=1

an

n
tn/2xn ∈ A[[t1/2, x]],

Vf(x) =
x2

2
−

∞∑

n=3

an

n
tn/2−1xn ∈ A[[t1/2, x]] (17)

where in the latter we assume that a1 = a2 = 0. Likewise, for Re,Re and F0,e.
Of course, when we set t = 1 to He or Hf , we recover H. In particular,

F0,e(1) = F0,f(1) = F0 ∈ A (18)

The next theorem gives a simple formula for F0,e in terms of Re and Se.
This appears in [5] but for polynomial potentials V and the proof in there uses
orthogonal polynomials.

Theorem 1.3. We have:

F0,e(t) =
1
t

t∫

0

(t− s)(2Re(s)S2
e (s) + R2

e(s) − 1)
2s

ds. (19)

It follows that

(t2F ′
0,e)

′ =
2Re(t)S2

e (t) + R2
e(t)

2
. (20)

where f ′ indicates the derivative with respect to t.

The next theorem gives a simple formula for F0,f in terms of Rf alone.

Theorem 1.4. We have:

F0,f(t) =
1
t2

t∫

0

(t− s) log Rf(s)ds (21)

In particular

(t2F0,f)′′ = log Rf(t). (22)
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Remark 1.2. Given a potential V =
∑

n≥1 anx
n/n as a formal power series,

from the potential theoretic approach one obtains that at the formal level, c
and b satisfy the system

2 =

2∫

−2

cxV ′(cx+ b)
dx

π
√

4 − x2
=

∑

n≥1

an

∑

j≥1

(
n− 1
2j − 1

)(
2j
j

)

c2jbn−2j

0 =

2∫

−2

V ′(cx+ b)
dx

π
√

4 − x2
=

∑

n≥1

an

∑

j≥0

(
n− 1

2j

)(
2j
j

)

c2jbn−2j−1.

(23)

In the case V = x2/2 − ∑
n≥1 anx

n/n, and R = c2, S = b, one easily obtains
the system (13).

Remark 1.3. Some authors prefer to consider the following rescaling Ṽe of Ve

Ṽe =
x2

2t
−
∑

n≥1

anx
n

n

Since Ve(x) = Ṽe(t1/2x), it is easy to see that

c̃(t) =
√
tc(t)

b̃(t) =
√
tb(t),

where c̃(t) and b̃(t) are defined using the system (23).

Remark 1.4. Likewise, for the following rescaling Ṽf of Vf

Ṽf =
x2

2
−
∑

n≥3

anx
n

n

we have Vf(x) = Ṽf(t1/2x)/t which implies that [here c̃(t) and b̃(t) are con-
structed from Ṽ(x)/t]

c̃(t) =
√
tc(t)

b̃(t) =
√
tb(t).

Remark 1.5. When V is even, then S = 0 and R satisfies the implicit equation

H(R) = 1 (24)

where

H(x) = x− 1
2

∞∑

n=3

a2nx
n

(
2n
n

)

= x−
∞∑

n=3

a2nx
n

(
2n
n− 1

)

. (25)

This is indeed so because
π∫

0

xV ′(xy)dy

tπ
√

4 − y2
=

1
t

(

x− 1
2

∞∑

n=3

a2nx
2n

(
2n
n

))

.



506 S. Garoufalidis and I. Popescu Ann. Henri Poincaré

1.5. Algebricity, Holonomicity and Asymptotics of The Planar Limit

In this section we discuss the algebricity of the planar limit. Let us recall
first some well-known properties of algebraic functions and the asymptotics of
their Taylor coefficients. The reader may consult [39] and also [19, Chpt.VII]
for further details. Computer implementations are available at [15,24,34].

An algebraic function y = y(x) is one that satisfies a polynomial equation
P (y, x) = 0 for some 2-variable polynomial with rational coefficients. Below,
we will be interested in algebraic functions y(x) which are regular at x = 0,
i.e., they have a Taylor series expansion

y(x) =
∞∑

n=0

anx
n (26)

The set of algebraic functions is a field, closed under differentiation with
respect to x. Algebraic functions are always holonomic, i.e., they satisfy (reg-
ular singular) linear differential equations with coefficients polynomials in x
with rational coefficients. An algebraic function y(x) gives rise to a ramified
d-sheeted covering C −→ C with semisimple local monodromy (with eigen-
values complex roots of unity) and global monodromy a finite subgroup of
SL(d,C). In other words, an algebraic function y(x) regular at x = 0 can be
uniquely analytically continued as a multivalued analytic function on C\Λ,
where Λ is a finite set of algebraic numbers. In practice the analytic contin-
uation can be obtained via Puiseux series, and all local expansions of y(x)
around a singularity x ∈ Λ are exactly computed by y(x); see for example
[15,34]. Since y(x) is holonomic, it follows that the sequence (an) of its Taylor
coefficients from (26) is holonomic, i.e., it satisfies a linear difference equation
with coefficients polynomials in n with rational coefficients; see [41]. To discuss
the asymptotics of (an) we need to recall what is a sequence of Nilsson type,
discussed in detail in [20].

Definition 1.6. We say that a sequence (an) is of Nilsson type if it has an
asymptotic expansion of the form:

an ∼n→∞
∑

λ,α,β

λnnα(log n)βSλ,α,βhλ,α,β

(
1
n

)

(27)

where
• the summation is over a finite set,
• the growth rates λ are algebraic numbers of equal modulus,
• the exponents α are rational and the nilpotency exponents β are natural

numbers,
• the Stokes constants Sλ,α,β are complex numbers,
• the formal power series hλ,α,β(x) ∈ K[[x]] are Gevrey-1 (i.e., the coeffi-

cient of xn is bounded by Cnn! for some C > 0),
• K is a number field generated by the coefficients of hλ,α,β(x) for all λ, α, β.

For a detailed discussion of the uniqueness, existence and computation
of the asymptotic expansion of a sequence (an) of Nilsson type, see [20]. The
results of [20] and the above discussion implies the following.
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Proposition 1.7. (a) If y(x) is algebraic and regular at x = 0, then the
sequence (an) defined by (26) is of Nilsson type, where β = 0 in (27).

(b) Moreover, the asymptotic expansion (27) can be computed exactly and
effectively.

We will apply the above proposition to the planar limit.

Proposition 1.8. (a) If Re(t),Se(t) (resp. Rf(t)) are algebraic functions, then
(t2F ′

0,e)
′(t) (resp. (t2F0,f)′′′(t)) is also an algebraic function.

(b) If V is a polynomial, then Re,Se and Rf are algebraic functions.
(c) Let

F0(t) =
∑

n≥1

fnt
n.

Under the assumptions (a) it follows that the sequence (fn) is holonomic.
(d) In addition, the sequence (fn) is of Nilsson type.

Several illustrations of the above proposition to extreme potentials are
given in Sects. 8 and 9.

1.6. The Plan of The Paper

In Sect. 2 we introduce and discuss the formal matrix models with the two
important gradings, the edge and the face gradings. Section 3 introduces the
potential theoretic part of analytic matrix models and the preliminary results
needed in Sect. 4 where the main analytic results are presented. We use here
real analysis tools combined with Chebyshev polynomials and elementary com-
binatorics to deal with the minimization problem (7), which is an alternative
to the classical complex analysis techniques.

Section 4 is the bulk of the analysis, the central pieces being Theorems 4.2
and 4.3. These are applied to some analytic examples in Sect. 5.

Next, in Sect. 6 we prove the matching claimed in Theorem 1.2 and in
Sect. 7 we give the proofs of the main results for the formal matrix models,
namely, Theorems 1.3 and 1.4.

The main calculations with the extreme potentials are in Sects. 8 and 9,
for the edge grading and respective the face grading. These main calculations
are complemented with a small discussion in Sect. 10 about the calculations
in the case of planar diagrams with vertices of valence 3 or 4.

In Sect. 11 we give the formal proof of ’t Hooft’s conjecture, materialized
first in the general form of Theorem 11.1 and then in Corollary 11.1, from
which Theorem 1.1 follows.

At last, Sect. 12 gives a perturbation result which is used in the proof of
Theorem 1.2 in Sect. 6, though the results in this section do not give sharp
results about the radius of convergence for the planar limit as in Sect. 11.
However this is a very useful analytic tool and we decided to include here.

Finally, the appendix contains some Taylor series of R, S and F . Some
of these terms are used in the proof of the main results, Theorems 1.3 and 1.4.
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2. Formal Matrix Models

It follows from the definition of the formal matrix model that the planar limit
F0 is the generating series of counting of planar graphs, weighted by the inverse
of the size of their automorphism groups. This is discussed in detail in [6,17,
29,33]. In particular, F0,e counts planar graphs where every n-valent edge con-
tributes a term tn/2. Likewise, F0,e counts planar graphs where every n-valent
face contributes a term tn/2−1.

3. Analytic Matrix Models

3.1. A Summary of Analytic Matrix Models

One of the main problems one faces with the minimization problem (7) is
the support of the equilibrium measure. Without extra assumptions on the
potential V , the support can be an arbitrary compact subset of the reals.
However, most of the formal computations on the planar limit as a count-
ing object are based on the formal manipulations as if the support was one
interval.

Naturally, what we want to do here in the first place, is a complete ana-
lytical characterization of the one interval support for the equilibrium measure
of (7). The way we do this here is based on an elementary approach to the
logarithmic potential due to the following formula for x, y ∈ [−2, 2]:

log |x− y| = −
∞∑

n=1

2
n
Tn

(x

2

)
Tn

(y

2

)

where Tn are the the Chebyshev polynomials of first kind. Based on this for-
mula we give a quick incursion into various formulae in logarithmic potential
theory on [−2, 2], especially the formula from Theorem 4.1 and show that the
general case of 1-cut potentials can always be reduced by rescaling and trans-
lation in the x-variable to this case. The reason of doing this is to highlight a
way of using manipulations of the Chebyshev polynomials in this framework.
This seems to be an alternative (in the case of measures with support [−2, 2])
to the powerful complex analysis methods discussed for example in [37].

However, the more interesting fact is that we obtain the following explicit
formula for IV. If V is a C3 potential whose equilibrium measure has support
[−2c+ b, 2c+ b], then

IV = − log c+

2∫

−2

V (cx+ b)dx
π
√

4 − x2
−

c∫

0

s

⎡

⎢
⎣

⎛

⎝

2∫

−2

xV ′(sx+ b)dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

V ′(sx+ b)dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦ds. (28)

This is attained via concrete exploitations of the Chebyshev polynomials, first
for the case of the interval [−2, 2] and then simple rescaling. It is worth pointing



Vol. 14 (2013) Analyticity of the Planar Limit of a Matrix Model 509

out that ultimately, this identity reduces to checking a combinatorial identity
for binomial coefficients. This we carry out using the implementation of the
Zeilberger method.

The previous formula, makes the dependence on the potential very trans-
parent. Any questions on the analyticity of IV (or F0,V) under perturbation
follows from the analyticity of the endpoints of the support of the equilibrium
measure.

Finally, we show that under certain non-degeneracy conditions made
explicit in Sect. 12, if Vt is an analytic perturbation of V depending on the
parameter t, then the planar limit IVt depends analytically on t on a domain
of the parameter space.

Here is an outline of what follows. In Sect. 3.2 we introduce the main
objects, in Sect. 3.3 we discuss the formula that connects the logarithmic
potentials and the Chebyshev polynomials. Next, in Sect. 3.4, we describe
the connection with Fourier analysis. Section 4 contains the main analytical
results.

3.2. Logarithmic Potentials with External Fields

As it was pointed out in the Introduction, we are going to look at the problem
of minimizing the logarithmic energy with external fields and then investigate
the planar limit in this framework.

Assume V : R → R is an admissible potential. For a closed set S ⊂ R,
according to [37] for the general case or [10] for the case S = R, the following
minimization problem has a unique solution (which turns out to be compactly
supported)

IV(S) = inf{IV(μ) : μ ∈ P(S)} (29)

where P(S) stands for the set of probability measure on S and

IV(μ) =
∫

V (x)μ(dx) −
∫∫

log |x− y|μ(dx)μ(dy). (30)

The term − ∫∫
log |x − y|μ(dx)μ(dy) is called the logarithmic energy of the

measure μ. For simplicity, we will denote IV = IV(R). Also for a given mea-
sure μ, we will denote suppμ, the support of the measure μ. The equilibrium
measure of (29) on the set S (cf. [37, Thm.I.1.3]) is characterized by

V (x) ≥ 2
∫

log |x− y|μ(dy) + C quasi-everywhere on S

V (x) = 2
∫

log |x− y|μ(dy) + C quasi-everywhere on suppμ.
(31)

Here, a property P holds “quasi everywhere” on the set Ω if we can find a set
A such that μ(A) = 0 for any measure μ of finite logarithmic energy and the
property P holds on Ω\A. This means, that the equality on suppμ is almost
surely realized with respect to any measure of finite logarithmic energy.

Notice here that if we change the variable of integration to x → cx + b
and y → cy + b, where c 	= 0, then, with

μc,b = ((· − b)/c)#μ,
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(·/c standing for the multiplication by 1/c), and for a given function φ, the
push forward φ#μ is the measure defined by φ#μ(A) = μ({x : φ(x) ∈ A}) for
any Borel measurable A. Therefore we have

IV(μ) =
∫

V (cx+ b)μb,c(dx) −
∫∫

log |cx− cy|μb,c(dx)μb,c(dy)

= IV(·c+b)−log(c)(μb,c) = IV(·c+b)(μb,c) − log c (32)

which in turn results with

IV = IV(·c+b)−log(c) = IV(·c+b) − log(c).

3.3. Logarithmic Potentials and Chebyshev Polynomials

Recall that the Chebyshev polynomials of the first kind Tn(x) are defined by

Tn(cos θ) = cos(nθ) (33)

see for example, [32]. Alternatively, they are given by the recursion relation

Tn+1(x) = 2xTn(x) − Tn−1(x), T0(x) = 1, T1(x) = x.

Tn are the orthogonal polynomials for the arcsine law 1[−1,1](x) 1
π

√
1−x2 . The

following lemma is due to Haagerup [22] and we reproduce the proof here for
completeness.

Lemma 3.1 (Haagerup).

(a) For any real x, y ∈ [−2, 2], x 	= y, we have

log |x− y| = −
∞∑

n=1

2
n
Tn

(x

2

)
Tn

(y

2

)

where the series here is convergent on x 	= y.
(b) If x > 2 and y ∈ [−2, 2], we have

log |x− y| = log

∣
∣
∣
∣
∣

x+
√
x2 − 4
2

∣
∣
∣
∣
∣
−

∞∑

n=1

2
n

(
x− √

x2 − 4
2

)n

Tn

(y

2

)

where the series is absolutely convergent.
(c) The logarithmic potential of a measure on [−2, 2] is given by

∫

log |x− y|μ(dx) = −
∑ 2

n
Tn

(x

2

)∫

Tn

(y

2

)
μ(dy) (34)

where this series makes sense pointwise.
(d) The logarithmic energy of the measure μ is given by

∫∫

log |x− y|μ(dx)μ(dy) = −
∞∑

n=1

2
n

(∫

Tn

(x

2

)
μ(dx)

)2

. (35)

In particular
∫∫

log |x − y|μ(dx)μ(dy) is finite if and only if
∑∞

n=1
2
n

(∫
Tn

(
x
2

)
μ(dx)

)2 is finite.
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Proof. We first point out that for any complex number z 	= 1, with |z| = 1,
one has that

log(1 − z) = −
∞∑

n=1

zn

n
, (36)

where we take the branch of log on C\(−∞, 0]. Now, write x = 2 cosu and
y = 2 cos v, and observe

x− y = 2(cosu− cos v) = 4 sin
(
u+ v

2

)

sin
(
v − u

2

)

,

and hence,

log |x− y| = log
∣
∣
∣
∣2 sin

(
u+ v

2

)∣
∣
∣
∣ + log

∣
∣
∣
∣2 sin

(
v − u

2

)∣
∣
∣
∣

= log |1 − ei(u+v)| + log |1 − ei(v−u)|
= Re

(
log(1 − ei(u+v)) + log(1 − ei(v−u))

)

= −
∞∑

n=1

1
n

Re
(
ein(u+v) + ein(v−u)

)

= −
∞∑

n=1

1
n

(cos(n(u+ v)) + cos(n(v − u)))

= −
∞∑

n=1

2
n

cos(nu) cos(nv)

= −
∞∑

n=1

2
n
Tn

(x

2

)
Tn

(y

2

)
.

For the case x > 2 and |y| ≤ 2, then write x = 2 coshu = eu +e−u, where
u = log x+

√
x2−4
2 and y = 2 cos v, thus

log |x− y| = log(eu(1 − e−u+iv)(1 − e−u−iv))

= u+ log(1 − e−u+iv) + log(1 − e−u−iv)

= u−
∞∑

n=1

2
n

e−nu cos(nv).

For the second part, for given −1 < r < 1 we introduce the kernel

Lr(x, y) := −
∑

n≥1

2rn

n
Tn

(x

2

)
Tn

(y

2

)
.

This can be computed for x = 2 cosu and y = 2 cos v for u, v ∈ [0, π) with
u 	= v as

Lr(2 cosu, 2 cos v)

= −
∑

n≥1

2rn

n
cos(nu) cos(nv)
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= −
∞∑

n=1

rn

n
(cos(n(u+ v)) + cos(n(u− v)))

= −
∞∑

n=1

rn

n
Re

(
ein(u+v) + ein(u−v)

)

=(36) log |1 − ei(u+v)| + log |1 − ei(u−v)|
=

1
2
(
log(1 + r2 − 2r cos(u+ v)) + log(1 + r2 − 2r cos(u− v))

)

Next, for any θ,

4 ≥ 1 + r2 − 2r cos θ ≥
(

1 + r

2

)2

(2 − 2 cos θ)

which results with

log 4 ≥ Lr(2 cosu, 2 cos v) ≥ 2 log
1 + r

2
+ log |2 cosu− 2 cos v|,

or for x, y ∈ [−2, 2], x 	= y,

log 4 ≥ Lr(x, y) ≥ 2 log
1 + r

2
+ log |x− y|.

This combined with Fatou’s lemma yields that

lim
r→1−

∫

Lr(x, y)μ(dy) =
∫

log |x− y|μ(dy).

The rest follows. �
The first consequence of the above proposition is the computation of the

well-known arcsine law of an interval; [37].

Corollary 3.2. If ω(dx) = 1[−2,2](x) dx
π

√
4−x2 is the arcsine law of the interval

[−2, 2], then
∫

log |x− y|ω(dy) =

{
0, |x| ≤ 2

log |x|+√
x2−4

2 , |x| > 2.
(37)

If μ is a signed measure on [−2, 2] with finite total variation and finite loga-
rithmic energy, then

∫

log |x− y|μ(dy) = c almost everywhere for all x ∈ [−2, 2] (38)

if and only if μ(dx) = 1[−2,2](x)
μ([−2,2]) dx

π
√

4−x2 . Here, almost everywhere is under-
stood with respect to the Lebesgue measure. Additionally, the constant c must
be 0.

Proof. Because the density of ω is even, it suffices to prove (37) for x > 2 or
x ∈ [−2, 2]. Equation (37) follows from the lemma and the fact that the series
in (34) is convergent and is convergent also in L2(1[−2,2](x) 1

π
√

4−x2 ).
For the second part, integrating (38) with respect to the arcsine law and

exchanging the integration one obtains that c = 0. Now, using equality (34) we
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obtain that
∫
Tn(x

2 )μ(dy) = 0 for all n ≥ 1 and thus μ and 1[−2,2](x)
μ([−2,2]) dx

π
√

4−x2

have the same moments and consequently must be equal. �
3.4. A Connection with Fourier Analysis

Take the map

Θ : [0, π] � θ → 2 cos θ ∈ [−2, 2].

For a given measure μ on [−2, 2] we define μ̃ = μ ◦ Θ, the measure on [0, π]
such that

μ̃(A) = μ(Θ(A))

for every measurable set A in [0, π]. The map μ → μ̃ from measures on [−2, 2]
into the set of measures on [0, π] is a one to one and onto. The advantage of
using this comes from

αn :=
∫

Tn

(x

2

)
μ(dx) =

∫

cos(nθ)μ̃(dθ), n ≥ 0, (39)

which tells us that the “moments” of μ with respect to Chebyshev’s polyno-
mials are seen as the Fourier coefficients of a measure on [0, π].

The following result is standard and we state it without proof.

Proposition 3.3. Given a sequence {αn}n≥0, with α0 = 1, the following are
equivalent:

1. There exists a measure on [−2, 2] such that αn =
∫
T (x

2 )μ(dx);
2. {αn}n≥0 is a bounded sequence and

〈μ, φ〉 :=

2∫

−2

φ(x)
π
√

4 − x2
dx+ 2

∞∑

n=1

αn

2∫

−2

Tn

(x

2

) φ(x)
π
√

4 − x2
dx

defines a nonnegative distribution, i.e., for any smooth nonnegative func-
tion φ : [−2, 2] → R+,

〈μ, φ〉 ≥ 0.

In particular, if
∑∞

n=1 |αn| is convergent, then there is a measure μ on [−2, 2]
such that αn =

∫
T (x

2 )μ(dx), if and only if

u(x) := 1 + 2
∞∑

n=1

αnTn

(x

2

)
≥ 0 for all x ∈ [−2, 2]. (40)

In this case the measure μ is given by μ(dx) = u(x)dx

π
√

4−x2 .

4. The Planar Limit of Analytic Matrix Models, The Main
Results

Given a continuous function f on [−2, 2], we define

βn(f) =

2∫

−2

f(x)Tn

(x

2

) dx
π
√

4 − x2
, n ≥ 0. (41)
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Notice that if f is bounded by a Ck−1 function and piecewise Ck for some
k ≥ 0, using the Fourier interpretation and repeated integrations by parts we
learn that βn(f) = o(n−k). Next define the orthogonal polynomials

T̃n(x) =
√

2Tn(x/2) (42)

for n≥1 and T̃0 = T0 = 1. These provide a Hilbert basis of
L2(1[−2,2](x) 1

π
√

4−x2 dx).

Theorem 4.1. Assume that V is a C2 and piecewise C3 function on [−2, 2]
and A ∈ R a constant. Then, there is a unique signed measure μ on [−2, 2] of
finite total variation which solves

{
2
∫

log |x− y|μ(dx) = V (x) + C almost everywhere for x ∈ [−2, 2],
μ([−2, 2]) = A.

where almost everywhere is with respect to the Lebesgue measure on [−2, 2].
The solution μ is given by μ(dx) = u(x) dx

π
√

4−x2 where

u(x) = A− 1
2

2∫

−2

yV ′(y)dy

π
√

4 − y2
− x

2

2∫

−2

V ′(y) dy

π
√

4 − y2

+
4 − x2

2

2∫

−2

V ′(x) − V ′(y)
x− y

dy

π
√

4 − y2
. (43)

In addition, the constant C must be given by C = − ∫ 2

−2
V (x)dx

π
√

4−x2 .

Proof. In the first place, the uniqueness is clear because of Corollary 3.2.
To prove the rest we first write the function V

V (x) =
∞∑

n=0

〈T̃n, V 〉T̃n(x) = β0(V ) + 2
∞∑

n=1

βn(V )Tn

(x

2

)

where the inner product is taken in L2(1[−2,2](x) dx
π

√
4−x2 ) and point out that

the regularity of V implies that βn(V ) = O(1/n2). Invoking representation
(34), results with

−2
∑

n≥1

2
n

(∫

Tn

(y

2

)
μ(dy)

)

Tn

(x

2

)
= C + β0(V ) + 2

∞∑

n=1

βn(V )Tn

(x

2

)
.

Thus, equating the coefficients, we must have now C = −β0(V ) and
∫

Tn

(x

2

)
μ(dx) = −n

2
βn(V )

which, means that μ(dx) = u(x)dx

π
√

4−x2 , for

u(x) = A−
∞∑

n=1

nβn(V )Tn

(x

2

)
.
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Here is the point where we need the C3 assumption to make sure this series
converges absolutely since in this case nβn(V ) = o(1/n2).

To prove equality (43), our task now is to show that

−
∞∑

n=1

nβn(V )Tn

(x

2

)

= −1
2

2∫

−2

yV ′(y)dy

π
√

4 − y2
− x

2

2∫

−2

V ′(y)dy

π
√

4 − y2

+
4 − x2

2π2

2∫

−2

V ′(y) − V ′(x)
x− y

dy
√

4 − y2
.

Notice that both sides of this equation are linear functions of V and
thus by a simple approximation argument it suffices to check it for the case
of V (x) = Tm(x

2 ) for some m ≥ 1. After making the change of variables
x = 2 cosu, y = 2 cos v, this identity reduces to checking that

− cos(nu) = − 1
π

π∫

0

cos v sinnv
sin v

dv − cosu
π

π∫

0

sinnv
sin v

dv

+
sinu
π

π∫

0

sin(nu) sin v − sin(nv) sinu
(cosu− cos v) sin v

dv.

Now, instead of checking this we look at the generating functions of the
right and left hand sides. Specifically, using the fact that for −1 < r < 1 and
t ∈ [0, π],

∞∑

n=1

rn−1 cos(nt) =
cos t− r

1 − 2r cos t+ r2

and
∞∑

n=1

rn−1 sin(nt) =
sin t

1 − 2r cos t+ r2
, (44)

the rest follows from straightforward computations. �

Proposition 4.1. If μ ∈ P([−2, 2]) and V is a C2 and piecewise C3 function
on [−2, 2], then

IV(μ) = β0(V ) + 2
∞∑

n=1

(

βn(V )αn +
α2

n

n

)

(45)

where

αn =
∫

Tn

(x

2

)
μ(dx). (46)
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Furthermore, we also have that

IV(μ) ≥ β0(V ) − 1
2

∞∑

n=1

nβn(V )2 (47)

with equality if and only if αn = −βn(V )/2 and

1 −
∞∑

n=1

nβn(V )Tn

(x

2

)
≥ 0 for any x ∈ [−2, 2]. (48)

In this case,

μ(dx) =

(

1 −
∞∑

n=1

nβn(V )Tn

(x

2

)
)

dx
π
√

4 − x2
. (49)

Proof. One can write
∫

V dμ = β0(V ) + 2
∞∑

n=1

βn(V )
∫

Tn

(x

2

)
μ(dx) = β0 + 2

∞∑

n=1

βn(V )αn.

To prove (47), one needs to complete the square in (45) to get that

IV(μ) = β0(V ) − 1
2

∞∑

n=1

nβn(V )2 +
∞∑

n=1

2
n

(

αn +
nβn(V )

2

)2

.

This implies inequality (47). The equality is attained only for the case αn =
−nβn(V )

2 which, cf. (40) determines a measure on [−2, 2] if and only if (48) is
satisfied. The rest follows easily. �

We arrive at a necessary and sufficient condition for deciding that an
equilibrium measure on [−2, 2] has full support.

Corollary 4.2. Assume that V is a C2 and piecewise C3 function on [−2, 2].
Then, the equilibrium measure on [−2, 2] has full support if and only if

1 −
∞∑

n=1

nβn(V )Tn

(x

2

)
> 0 for x on a dense subset of [−2, 2]. (50)

In addition, in this case, we also have that

inf
μ∈P([−2,2])

IV(μ) = β0(V ) − 1
2

∞∑

n=1

nβn(V )2.

Proof. Condition (50) and the previous Proposition guarantee that there is a
measure μ with full support such that

∫ 2

−2
Tn(x

2 )μ(dx) = −nβn

2 .
The other way around works as follows. Assume that μV is the equilib-

rium measure on [−2, 2] and has full support. What we need to show is that
(50) is satisfied.
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Let αn =
∫ 2

−2
Tn(x

2 )μV(dx). Then, for any other measure ν with IV(ν) <
∞ on [−2, 2], from (45) we obtain that

IV((1 − ε)μV + εν)

= β0(V ) − 1
2

∞∑

n=1

nβn(V )2 +
∞∑

n=1

2
n

(

(1 − ε)αn + εα′
n +

nβn(V )
2

)2

where α′
n =

∫
Tn(x

2 )ν(dx). Since IV(μV) is the minimum of IV(ν) over all
probability measures on [−2, 2], differentiation with respect to ε > 0 at 0
yields

∑

n≥1

1
n

(

αn +
nβn(V )

2

)

(α′
n − αn) ≥ 0. (51)

Now we consider measures of the form

ν(dx) = (1 + δφ(x))μV(dx)

where φ is a polynomial such that
∫
φ dμ = 0 and δ is small in absolute value.

Applying this for ±δ, in (51), where δ is small enough, we obtain that

∑

n≥1

1
n

(

αn +
nβn(V )

2

)∫

Tn

(x

2

)
φ(x)μV(dx) = 0. (52)

A word of caution is in order here. We need to justify that the measure ν has
finite logarithmic energy, namely that

∑

n≥1

1
n

(∫

Tn

(x

2

)
(1 + δφ(x))μV(dx)

)2

< ∞.

This actually follows easily for each polynomial φ = Tk for some k ≥ 0 from
the fact that 2TkTl = T|k−l| + Tk+l for any k, l ≥ 0.

Because of (31) we have that 2
∫

log |x − y|μV(dy) = V (x) + C, almost
surely (with respect to the Lebesgue measure) on [−2, 2], and from Theo-
rem 4.1, the density g(x) of μV is given by

g(x) = A1

√
4 − x2

2∫

−2

V ′(y) − V ′(x)
√

4 − y2(y − x)
dy +

A2 +A3x√
4 − x2

for some constants A1 and A2. In particular, since V is C3 it implies that
g(x) = h(x)

π
√

4−x2 for some continuous function h. Since the measure μV has full
support, h(x) > 0 on a dense set.

Next, we observe that because βn(V ) is square summable in
L2(1[−2,2](x) dx

π
√

4−x2 ),

R(x) :=
∑

n≥1

1
n

(

αn +
nβn(V )

2

)

Tn

(x

2

)
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is convergent in L2(1[−2,2](x) dx
π

√
4−x2 ), therefore we deduce from (52) that

2∫

−2

R(x)φ(x)h(x)
dx

π
√

4 − x2
= 0,

for any polynomial φ. This easily implies that R(x) = 0 almost everywhere
and this in turn results with αn = −nβn(V )/2. The rest follows. �

Theorem 4.2. If the equilibrium measure of a V which is C2 and piecewise C3

on [−2, 2] has full support then,

IV = inf
μ∈P([−2,2])

IV(μ)

=

2∫

−2

V (x)dx
π
√

4 − x2
+

1∫

0

t

⎡

⎢
⎣

⎛

⎝

2∫

−2

xV ′(tx)dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

V ′(tx)dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦dt

= V (0) −
1∫

0

1
t

⎡

⎢
⎣−1 +

⎛

⎝1 −
2∫

−2

txV ′(tx)dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

tV ′(tx)dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦dt.

Proof. According to Corollary 4.2, we have

IV = β0(V ) − 1
2

∑

n≥1

nβn(V )2.

Thus our task is to prove that

1
2

∑

n≥1

nβn(V )2 =

1∫

0

t

⎡

⎢
⎣

⎛

⎝

2∫

−2

xV ′(tx)dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

V ′(tx)dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦dt.

A polarization argument shows that this is equivalent to proving that for any
C3 potentials V1 and V2

1
2

∑

n≥1

nβn(V1)βn(V2) =

1∫

0

t

⎛

⎝

2∫

−2

xV ′
1(tx)dx

2π
√

4 − x2

⎞

⎠

⎛

⎝

2∫

−2

xV ′
2(tx)dx

2π
√

4 − x2

⎞

⎠dt

+

1∫

0

t

⎛

⎝

2∫

−2

V ′
1(tx)dx

π
√

4 − x2

⎞

⎠

⎛

⎝

2∫

−2

V ′
2(tx)dx

π
√

4 − x2

⎞

⎠dt. (53)

To do this, because of the linearity in V1 and V2 and the fact that polynomi-
als are dense (with respect to C3 topology) in the set of smooth functions on
[−2, 2], it suffices to check this for V1(x) = xk and V2(x) = xm. If k or m is
zero, both sides of (53) are zero, therefore we need to check this for k,m ≥ 1.

Now, we use

x2n =
1

22n−1

n−1∑

k=0

(
2n
k

)

T2n−2k(x) +
1

22n

(
2n
n

)

,
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and

x2n+1 =
1

22n

n∑

k=0

(
2n+ 1
k

)

T2n+1−2k(x)

from which a direct calculation yields

2∫

−2

xiTn

(x

2

) dx
π
√

4 − x2
=

(
i

i−n
2

)

, (54)

with the convention that
(

i
p+1/2

)
= 0 for p ∈ Z and

(
i
p

)
= 0 for p < 0.

Therefore, (53) becomes in this case

1
2

∑

n≥1

n

(
m

m−n
2

)(
k

k−n
2

)

=
mk

4(m+ k)

(
m
m
2

)(
k
k
2

)

+
mk

(m+ k)

(
m− 1
m−1

2

)(
k − 1
k−1
2

)

.

In the case m, k have different parities, then the above expression is 0. If they
have the same parities, the equality follows from the next lemma. �

Lemma 4.3. The following identities hold

∑

p

p

(
2l1
l1 − p

)(
2l2
l2 − p

)

=
l1l2

2(l1 + l2)

(
2l1
l1

)(
2l2
l2

)

∑

p

(2p+ 1)
(

2l1 + 1
l1 − p

)(
2l2 + 1
l2 − p

)

=
(2l1 + 1)(2l2 + 1)

l1 + l2 + 1

(
2l1
l1

)(
2l2
l2

)

with the convention that
(

j
q

)
= 0 for q < 0 or q > j.

Proof. These identities can be checked with the zb package written for Math-
ematica. For details on this we refer the reader to the wonderful book [35]. For
completeness we give here the main calculation.

The first identity is equivalent to

h(l1, l2) :=
∑

p

2p(l1 + l2)
(

2l1
l1−p

)(
2l2

l2−p

)

l1l2
(
2l1
l1

)(
2l2
l2

) = 1.

Let us denote

f(l1, l2, p) =
2p(l1 + l2)

(
2l1

l1−p

)(
2l2

l2−p

)

l1l2
(
2l1
l1

)(
2l2
l2

) .

The idea of the zb method for our case is to write

f(l1 + 1, l2, p) − f(l1, l2, p) = g(l1, l2, p+ 1) − g(l1, l2, p). (55)

and this proves that for all l1 ≥ 1 one has h(l1, l2) = h(1, l2). Since it is is
immediate to show that h(1, l2) = 1, the rest follows as soon as we know that
g(l1, l2, p) = 0 for p = 1 and for large p.
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The whole point of the zb method is to actually compute the function
g(l1, l2, p). We will refer the reader for the details to [35] and will give here
just the results obtained with Mathematica.

g(l1, l2, p) = −
2p(p− 1)

(
2l1+1
l1+p

)(
2l2−1
l2−p

)

l1(2l1 + 1)
(
2l1
l1

)(
2l2
λ2

) .

Notice that for p ≥ min{l1 + 2, l2 + 1}, g(l1, l2, p) = 0. One can directly check
(55), by dividing both sides by f(l1, l2, p) which reduces it to an identity in
the field Q(l1, l2, p).

For the second identity, as in the preceding argument, we want to show
that

h(l1, l2) :=
∑

p

(2p+ 1)(l1 + l2 + 1)
(
2l1+1
l1−p

)(
2l2+1
l2−p

)

(2l1 + 1)(2l2 + 1)
(
2l1
l1

)(
2l2
l2

) = 1.

Defining

f(l1, l2, p) =
(2p+ 1)(l1 + l2 + 1)

(
2l1+1
l1−p

)(
2l2+1
l2−p

)

(2l1 + 1)(2l2 + 1)
(
2l1
l1

)(
2l2
l2

) ,

the corresponding companion in this case is

g(l1, l2, p) = −
p2(l2 + 1)2

(
2l1+2

l1−p+1

)(
2l2

l2−p

)

(
2l1+2
l1+1

)(
2l2
l2

) .

Equation (55) is satisfied and g(l1, l2, 0) = 0 and g(l1, l2, p) = 0 for p ≥
min{l1 + 1, l2 + 1}. This proves that h(l1, l2) = h(0, l2). Now, h(0, l2) = 1
which ends the proof. �

Before we state the next result, for a C3 potential V , we define

ψb,c(x) :=

2∫

−2

V ′(cx+ b) − V ′(cy + b)
x− y

dy

π
√

4 − y2
. (56)

Theorem 4.3. Assume V is an admissible potential on R. Then the equilibrium
measure on R associated to V has support the interval [−2c+ b, 2c+ b] if and
only if (c, b) is the unique absolute maximizer in R∗

+ × R of

H(c, b) := log c− 1
2

2∫

−2

V (cx+ b)
dx

π
√

4 − x2
(57)

and

ψb,c > 0 on a dense subset of [−2, 2]. (58)

If in addition V is a C2 and piecewise C3 potential on a neighborhood of the
support [−2c+ b, 2c+ b], then (b, c) is a solution of

{∫ 2

−2
cxV ′(cx+ b) dx

π
√

4−x2 = 2
∫ 2

−2
V ′(cx+ b) dx

π
√

4−x2 = 0.
(59)
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In this case the equilibrium measure μV is given by

μV(dx) = 1[−2c+b,2c+b](x)
ψb,c((x− b)/c)

√
4c2 − (x− b)2

2cπ
dx

and

IV = − log c+

2∫

−2

V (cx+ b)dx
π
√

4 − x2

−
c∫

0

s

⎡

⎢
⎣

⎛

⎝

2∫

−2

xV ′(sx+ b)dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

V ′(sx+ b)dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦ds

= V (b) − log c−
c∫

0

1
s

×

⎡

⎢
⎣−1 +

⎛

⎝1 −
2∫

−2

sxV ′(sx+ b)dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

sV ′(sx+ b)dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦ds.

(60)

Proof. If the support of μV is the interval [−2c + b, 2c + b], we have to prove
first that (c, b) is the unique absolute maximizer of H. The function H appears
in the literature as the F -functional of Mhaskar and Saff (see for instance [37,
page 194]) and for the sake of completeness we adapt the proof of this first
part from there.

Define the arcsine law of the interval [−2c+ b, 2c+ b] to be

ωc,b(dx) = 1[−2c+b,2c+b](x)
dx

π
√

4c2 − (x− b)2
.

A simple rescaling of Eq. (37), shows that
∫

log |x− y|ωc,b(dy) ≥ log(c) for all
x, with equality only for x ∈ [−2c+ b, 2c+ b].

Integrating Eq. (31) against the measure ωc′,b′ yields that
∫

V (x)ωc′,b′(dx) − 2
∫ ∫

log |x− y|ωc′,b′(dx)μV(dy) ≥ C

and thus, after interchanging the integrations,
∫

V (x)ωc′,b′(dx) − 2 log(c′) ≥ C.

Because (31) is equality quasi-everywhere on [−2c+b, 2c+b], this implies that
we have equality in the above inequality for c′ = c and b′ = b. In fact, this is
the only case of equality as otherwise

C =
∫

V (x)ωc′,b′(dx) − 2 log(c′)

≥
∫

V (x)ωc′,b′(dx) − 2
∫ ∫

log |x− y|ωc′,b′(dx)μV(dy) ≥ C,



522 S. Garoufalidis and I. Popescu Ann. Henri Poincaré

hence we must have that μV almost surely, log(c′) =
∫

log |x − y|ωc′,b′(dy),
which according to (37) is possible if and only if ωc′,b′ is actually equal to ωc,b,
or c′ = c and b′ = b.

From (57), upon differentiation with respect to c and b, we deduce that
2∫

−2

cxV ′(cx+ b)
dx

π
√

4 − x2
= 2 and

2∫

−2

V ′(cx+ b)
dx

π
√

4 − x2
= 0 (61)

which combined with (43) proves (58).
To prove the converse, notice that because (c, b) is a maximizer of H,

we have (61). It is then clear that the μV solves Eq. (43). What we have to
prove is that this measure satisfies condition (31). To this end, it is sufficient
to prove that for any b′ ∈ R and c′ > 0 one has

∫ (

V (x) − 2
∫

log |x− y|μV(dy)
)

ωc′,b′(dx) ≥ C.

Switching the integration in the double integral, and performing some elemen-
tary calculations, this inequality becomes equivalent to

∫
V (c′x+ b′) dx
π
√

4 − x2
− 2

∫ ∫

log |x− y|ωc′,b′(dx)μV(dy) ≥ C.

This inequality is equality for c′ = c and b′ = b, and thus C = −H(c, b). If c′

and b′ are arbitrary, the inequality is a consequence of the fact that the left
hand side of this inequality is greater than or equal to −H(c′, b′) which in turn
is by the hypothesis ≥ −H(c, b).

Identity (60) follows from Theorem 4.2 applied to Ṽ (x) = V (cx+ b). �

In the case of even potentials, we know that the equilibrium measure is
symmetric and thus in the preceding result we can always assume that b = 0
and this deserves a special statement because of its simplicity.

Corollary 4.4. If V is a C2, piecewise C3 and even satisfying (5), its equilib-
rium measure is supported on the interval [−2c, 2c] if and only if c > 0 is the
unique maximizer of

H(c) = log c−
2∫

0

V (cx)dx
π
√

4 − x2

and

ψc(x) :=

2∫

−2

V ′(cx) − V ′(cy)
x− y

dy

π
√

4 − y2

is positive on a dense set of [−2, 2]. In particular c solves
2∫

−2

cxV ′(cx)
dx√

4 − x2
= 2. (62)
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In this case the planar limit is

IV = V (0) − log c−
c∫

0

1
s

⎡

⎢
⎣−1 +

⎛

⎝1 −
2∫

0

sxV ′(sx)
dx

π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦ds. (63)

We point out here an interesting property, namely, that the solutions
(c, b) of the system (59) are critical points of the functional IV from (60).

Proposition 4.5. Let V be a C1 potential on R and consider

IV(u, v) = − log u+

2∫

−2

V (ux+ v)dx
π
√

4 − x2

−
u∫

0

s

⎡

⎢
⎣

⎛

⎝

2∫

−2

xV ′(sx+ v)dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

V ′(sx+ v)dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦ds.

If (c, b) satisfy

2∫

−2

V ′(cx+ b)dx
π
√

4 − x2
= 0,

then

∂IV
∂v

∣
∣
∣
∣
(c,b)

= 0. (64)

If (c, b) satisfy (59), then

∂IV
∂u

∣
∣
∣
∣
(c,b)

= 0. (65)

In particular the critical points of H from (57) are also critical points of IV.

Proof. To see (64), after differentiating with respect to v, we need to show
that

∂IV
∂v

∣
∣
∣
∣
(c,b)

= −
2∫

−2

V ′(cx+ b)dx
π
√

4 − x2

+

c∫

0

2∫

−2

2∫

−2

s(xy + 4)V ′(sx+ b)V ′′(sy + b)
4π2

√
(4 − x2)(4 − y2)

dxdy ds = 0.

Now we present the following result.
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Lemma 4.6. If U ∈ C1([−2, 2]) or is a formal power series, then the following
holds

1∫

0

2∫

−2

2∫

−2

s(xy + 4)U(sx)U ′(sy)
4π2

√
(4 − x2)(4 − y2)

dxdy ds

=

2∫

−2

U(x)
π
√

4 − x2
dx

1∫

0

2∫

−2

sU ′(sy)

π
√

4 − y2
dy ds. (66)

In particular, if U satisfies,
2∫

−2

U(x)
π
√

4 − x2
dx = 0,

then
1∫

0

2∫

−2

2∫

−2

s(xy + 4)U(sx)U ′(sy)
4π2

√
(4 − x2)(4 − y2)

dxdy ds = 0.

Proof. By polarization, it suffices to show that for any two C1 potentials or
formal power series, U1 and U2 on [−2, 2], we have that

1∫

0

2∫

−2

2∫

−2

s(xy + 4)(U1(sx)U ′
2(sy) + U2(sx)U ′

1(sy)
4π2

√
(4 − x2)(4 − y2)

dxdy ds

=

2∫

−2

U1(x)
π
√

4 − x2
dx

1∫

0

2∫

−2

sU ′
2(sy)

π
√

4 − y2
dy ds

+

2∫

−2

U2(x)
π
√

4 − x2
dx

1∫

0

2∫

−2

sU ′
1(sy)

π
√

4 − y2
dy ds.

It is clear now that it suffices to check this for U1(x) = xn and U2(x) = xm,
which, with the help of (54), becomes

1
n+m+ 1

[
n

4

(
n
n
2

)(
m+ 1
m+1

2

)

+
m

4

(
m
m
2

)(
n+ 1
n+1

2

)

+m
(
n
n
2

)(
m− 1
m−1

2

)

+ n

(
m
m
2

)(
n− 1
n−1

2

)]

=
m

m+ 1

(
n
n
2

)(
m− 1
m−1

2

)

+
n

n+ 1

(
m
m
2

)(
n− 1
n−1

2

)

.

Here we use the convention that
(
a
b

)
= 0 if b is not a nonnegative integer. As

long as n and m have the same parity, both sides of the above expression are
0. Also due to the symmetry in n and m, it suffices to check this for n = 2k
and m = 2l + 1. In this case, it is easy to prove that both sides are equal to
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2l + 1
2l + 2

(
2k
k

)(
2l
l

)

.

�

Taking U(x) = V ′(cx+b) in the lemma, after a simple change of variables,
the rest follows.

Equation (65) is clear from the fact that

IV(u, v) = V (v) − log u

−
u∫

0

1
s

⎡

⎢
⎣−1+

⎛

⎝1−
2∫

−2

sxV ′(sx+ v)dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

sV ′(sx+ v)dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦ds.

and thus the u-derivative vanishes under the condition of (59). �

5. Examples and Computations with Analytic Matrix Models

5.1. Cases of One-Cut Potentials

With the result from Theorem 4.3, it is instructive to recover the classical
results (see [37] where weaker regularity conditions are required) which guar-
antee that there is a one interval support of the equilibrium measure.

Corollary 5.1. Assume that a C3 potential V satisfying (5) is either convex
or even with xV ′(x) increasing on [0,∞). Then the equilibrium measure has
one interval support and the maximizer is non-degenerate (i.e. the Hessian of
H is invertible at the maximizer). In addition, the function ψc,b is positive on
[−2, 2].

Proof. First, we need to check that the function H(b, c) has a unique maxima.
In the case V is convex, we show that H is concave. Indeed, the hessian

of H at (c, b) is

(HessH)(c, b) =

⎡

⎣
− 1

c2 − ∫ 2

−2
x2V ′′(cx+b)dx

2π
√

4−x2 − ∫ 2

−2
xV ′′(cx+b)dx

2π
√

4−x2

− ∫ 2

−2
xV ′′(cx+b)dx

2π
√

4−x2 − ∫ 2

−2
V ′′(cx+b)dx

2π
√

4−x2

⎤

⎦

and strict concavity is equivalent to

1
c2

+

2∫

−2

x2V ′′(cx+ b)dx
2π

√
4 − x2

> 0 and

1
c2

2∫

−2

V ′′(cx+ b)dx
2π

√
4 − x2

+

2∫

−2

V ′′(cx+ b)dx
2π

√
4 − x2

2∫

−2

x2V ′′(cx+ b)dx
2π

√
4 − x2

−
⎛

⎝

2∫

−2

xV ′′(cx+ b)dx
2π

√
4 − x2

⎞

⎠

2

> 0.
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The only way either of these fail is if V ′′(cx+ b) = 0 for all x ∈ [−2, 2], which
implies V (x) = Ax+B for some constants A,B and all x ∈ [−2c+ b, 2c+ b].
This in turn results with F (c′, b′) = log c′ −B for all c′ < c which contradicts
the assumption that (c, b) is a maximizer of F .

On the other hand, one can easily check that H is concave on (0,∞)×R.
This combined with strict concavity near (c, b) implies that the maximizer is
unique.

In the case V is even and xV ′(x) is increasing, we may assume that b = 0
and thus the function H becomes a function of one variable with

H ′(c) =
1
c

−
2∫

−2

xV ′(cx)dx
2π

√
4 − x2

=
1
c

⎛

⎝1 −
2∫

0

cxV ′(cx)dx
π
√

4 − x2

⎞

⎠

Now, since the function xV ′(x), is increasing, one can see that cH ′(c) is
decreasing and thus there is only at most one critical point of H. On the
other hand, one can check that there is a maximizer of H(c), hence we deduce
that there is such a unique maximizer.

In addition to this, the Hessian of H(c, b) at the maximizer (c, 0) is

(HessH)(c, b) =

[
− 1

c2 − ∫ 2

−2
x2V ′′(cx)dx

2π
√

4−x2 0

0 − ∫ 2

−2
V ′′(cx)dx

2π
√

4−x2

]

Now, using the fact that H ′(c) = 0 and a simple integration by parts reveals
that

1 =

2∫

−2

cxV ′(cx)dx
2π

√
4 − x2

=

2∫

−2

c2V ′′(cx)
√

4 − x2dx
2π

=

2∫

−2

4c2V ′′(cx)dx
2π

√
4 − x2

−
2∫

−2

c2x2V ′′(cx)dx
2π

√
4 − x2

which implies

4

2∫

−2

V ′′(cx)dx
2π

√
4 − x2

=
1
c2

+

2∫

−2

x2V ′′(cx)dx
2π

√
4 − x2

. (*)

Now, if we denote g(x) = xV ′(x), then g is an increasing function on [0,∞]
and therefore x2V ′′(x) = xg′(x) − g(x) > −g′(x) for all x > 0. In particular
we obtain that c2x2V ′′(cx) > −g(cx) for all x ∈ [0, 2]. Furthermore, from the
equation determining c, we get

1 =

2∫

0

g(cx)dx
π
√

4 − x2
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which in turn implies

1
c2

+

2∫

0

c2x2V ′′(cx)dx
π
√

4 − x2
>

1
c2

− 1
c2

2∫

0

g(cx)dx
π
√

4 − x2
= 0

and this means that quantities in (*) are positive, thus the Hessian of F at
(c, 0) is non-degenerate.

Having checked the uniqueness of the maximizer, we need to check the
other condition. In the case of convex potentials, the non-negativity of ψc,b

follows from the fact that V ′(cx+b)−V ′(cy+b)
x−y ≥ 0 for all x, y ∈ [−2, 2]. Further-

more, ψc,b(x) = 0, enforces V ′(cx+ b) = V ′(cy+ b) for all y ∈ [−2, 2], which in
turn yields V (c ·+b) is constant on [−2, 2], something which is contradicted by
the assumption that (c, b) is a maximizer of H(c, b). Hence we actually obtain
the stronger conclusion, namely ψc,b(x) > 0 on [−2, 2].

In the case V is even and xV ′(x) increases on [0,∞], one can show that
ψc is an even function and with simple manipulations of integrals that

ψc(x) =

2∫

0

xV ′(cx) − yV ′(cy)
x2 − y2

dy

π
√

4 − y2

which makes clear that ψc(x) > 0 for all x ∈ [−2, 2]. �
5.2. Analytic Planar Limits of Various Even Potentials

In this section we explicitly compute the planar limit of some 1-cut potentials,
illustrating the formulas of Sect. 4. A typical example is the case where V
is a smooth potential, which is analytic near the support of the equilibrium
measure.

The easiest to deal with is the case of even potentials because in this
case we can invoke Corollary 4.4 and reduce the problem of determining the
support of the equilibrium measure to the maximization of a function of a
single variable. In this case the planar limit is actually a one variable function
of the right endpoint 2c of the equilibrium measure.

Assume that V is an even potential such that it has a power series expan-
sion valid on a neighborhood of the support:

V (x) =
∞∑

n=1

a2n
x2n

2n
. (67)

In this case, from Corollary 4.4 we learn that

H(c) = log c− 1
2

∞∑

n=1

a2nc
2n

2n

2∫

−2

x2ndx
π
√

4 − x2
= log c− 1

2

∞∑

n=1

a2nc
2n

2n

(
2n
n

)

where in the last equality we used Eq. (54). The critical points of this function
satisfy (62) which becomes

∞∑

n=1

a2nc
2n

(
2n
n

)

= 2. (68)
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If c is the maximizer of F , then, again from Corollary 4.4 and (54), the planar
limit is given by

IV = − log c+

c∫

0

1
t

⎡

⎣−1 +

(

1 − 1
2

∞∑

n=1

a2nt
2n

(
2n
n

))2
⎤

⎦dt.

Example 5.2. For V (x) = a2n
x2n

2n , with a2n > 0, and n ≥ 1, the support of the
equilibrium measure is [−2c, 2c], where

c =
(
a2n

2

(
2n
n

))− 1
2n

.

In this case, the equilibrium measure is

μV(dx) = 1[−2c,2c](x)
1

2πc
ψc(x/c)

√
4c2 − x2dx,

ψc(x) = a2nc
2n−1

n−1∑

l=0

(
2l
l

)

x2(n−l−1)

and the planar limit is

IV =
log a2n

2n
+

log
((

2n
n

)
/2
)

2n
+

3
4n
.

To see this, one has to realize that (68) becomes in this case

a2nc
2n

(
2n
n

)

= 2

which has only one positive solution, and this is the maximizer of H(c) =
log c− a2nc2n

4n

(
2n
n

)
. The rest of the equalities are straightforward calculations.

It is worth pointing out that in this example the potential is convex and
thus, the equilibrium measure must be supported on a single interval.

For n = 1, we recover the semicircular law.

Example 5.3. Assume V (x) = a2n
x2n

2n +a2m
x2m

2m with a2m > 0 and 1 ≤ n ≤ m.
In this case the equilibrium measure has a single interval support if and only
if

a2n ≥ −Cnma
m/n
2m (69)

where

Cnm = Knm

(
2

(
2m
m

) − (
2n
n

)
Knm

)m−n
n

with Knm = min
t∈[0,4]

∑m−1
l=0

(
2l
l

)
tm−l−1

∑n−1
l=0

(
2l
l

)
tn−l−1

.

(70)

In this case, the support of μV is [−2c, 2c] where c is the unique positive
solution to

a2nc
2n

(
2n
n

)

+ a2mc
2m

(
2m
m

)

= 2, (71)
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the equilibrium measure is

μV(dx) =
1

2πc
1[−2c,2c](x)ψc(x/c)

√
4c2 − x2 dx

ψc(x) = a2nc
2n−1

n−1∑

l=0

(
2l
l

)

x2(n−l−1) + a2mc
2m−1

m−1∑

l=0

(
2l
l

)

x2(m−l−1)

and the planar limit is

IV = − log c+
c2na2n

2n

(
2n
n

)

+
c2ma2m

2m

(
2m
m

)

−c2(n+m)a2na2m

4(n+m)

(
2n
n

)(
2m
m

)

− c4na2
2n

16n

(
2n
n

)2

− c4ma2
2m

16m

(
2m
m

)2

.

To prove these, we need to look at the critical Eq. (68) and notice that
for

f(c) = a2nc
2n

(
2n
n

)

+ a2mc
2m

(
2m
m

)

− 2,

one has

f ′(c) = 2c2n−1

(

na2n

(
2n
n

)

+ma2mc
2(m−n)

(
2m
m

))

.

It is clear that f ′ has at most one positive root. If c0 > 0 is the positive root of
f ′, then f ′(c) < 0 for 0 < c < c0 and f ′(c) > 0 for c > c0. If f ′ does not have
any positive root, then f ′ > 0. Since f(0) = −2 and f(∞) = ∞, it follows that
f must have a unique zero which in turn is the unique maxima of H(c).

Now having proved that there is a unique maxima, we need to check the
second condition from (4.4). That boils down to

ψc(x) ≥ 0

on [−2, 2] with strict inequality on a dense set. This is equivalent to

a2n ≥ −a2mc
2m−2n

∑m−1
l=0

(
2l
l

)
x2(m−l−1)

∑n−1
l=0

(
2l
l

)
x2(n−l−1)

for all x ∈ [−2, 2] which in turn is satisfied if and only if

a2n ≥ −a2mc
2m−2nKnm

where Knm is defined by (70). On the other hand from the critical Eq. (71)
replacing a2n, we arrive at

2 − a2mc
2m

(
2m
m

)

(
2n
n

) ≥ −a2mc
2mKnm

and thus, after noting that Knm ≤ (
2m
m

)
/
(
2n
n

)
, is the same as

c ≤
(

2
a2m(

(
2m
m

) −Knm

(
2n
n

)
)

)1/(2m)

.
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For the function f , we know that f(x) ≤ 0 if and only if x ≤ c. Thus, we have
the second condition in Corollary 4.4 satisfied if and only if

f

⎛

⎝

(
2

a2m(
(
2m
m

) −Knm

(
2n
n

)
)

)1/(2m)
⎞

⎠ ≥ 0

which is equivalent to Eq. (69).
The constant Knm from (70) depends only on n and m. It can be explic-

itly computed in the case n = 1 and any m ≥ 2 as the minimizer is t = 0 and
thus K1m =

(
2m−2
m−2

)
/
(
2m−2
m−1

)
and then a simple rearrangement reveals that

C1m =

(
2m−2
m−1

)

(
2m−2

m

)m−1 .

In general, it does not seem that one can find an explicit algebraic expression
of the minimizer in (70). For the case of n = 2 and m = 3, we have an exact
solution as the minimizer in the expression there is t = −2 +

√
6 and then in

this case K23 = 2
√

6 − 2 which produces

C23 =
√

4 +
√

6.

The root c from Eq. (71) does not have a simple representation in general.
However, in some cases it can be solved explicitly. For example if m = 2n, one
has

c =

⎛

⎝
−a2n

(
2n
n

)
+
√

a2
2n

(
2n
n

)2
+ 8a4n

(
4n
2n

)

2a4n

(
4n
2n

)

⎞

⎠

1
2n

and similarly there are algebraic expressions in the casem = 3n orm = 3k, n =
2k and also m = 4n or m = 4k, n = 3k, but we omit the lengthy formulae
here.

Corollary 5.4. For the quartic potential

V (x) = a2
x2

2
+ a4

x4

4

the equilibrium measure has a single interval support if and only if a2 ≥ −2
√
a4

in which case

h(x) =
1
2π

1[−2c,2c](x)
√

4c2 − x2(b2 + a4x
2)

c =

√

−a2 +
√
a2
2 + 12a4

6a4

b2 =
2a2 +

√
a2
2 + 12a4

3
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IV =
3
8

+
1
2

log

(
a2 +

√
a2
2 + 12a4

2

)

+
−a4

2 − 36a2
2a4 + 162a2

4 + (a3
2 + 30a2a4)

√
a2
2 + 12a4

432a2
4

We should point out that this example appears for instance in [23].

6. Matching Formal and Analytic Matrix Models

In this section we will prove Theorem 1.2. Our first task is to match the ana-
lytic Eq. (59) of (b, c) of a 1-cut potential with the Eq. (13) for (R,S). Consider
a 1-cut potential V and its Taylor series expansion at x = 0:

V (x) =
∞∑

n=1

an
xn

n
.

Using the key identity

2∫

−2

xndx
π
√

4 − x2
=

{(
n

n/2

)
if n is even

0 if n is odd
(72)

and interchanging summation and integration, (54) gives

2∫

−2

cxV ′(cx+ b)
dx

π
√

4 − x2
=

∑

n≥1

an

∑

j≥1

(
n− 1
2j − 1

)(
2j
j

)

c2jbn−2j

2∫

−2

V ′(cx+ b)
dx

π
√

4 − x2
=

∑

n≥1

an

∑

j≥0

(
n− 1

2j

)(
2j
j

)

c2jbn−2j−1

Then, Eq. (59) gives the system of non-linear equations for (b, c)
⎧
⎨

⎩

∑
n≥1 an

∑
j≥1

(
n−1
2j−1

)(
2j
j

)
c2jbn−2j = 2

∑
n≥1 an

∑
j≥0

(
n−1
2j

)(
2j
j

)
c2jbn−2j−1 = 0

(73)

Following the notation of [4], let us use the change of variables (b, c2) =
(S,R) as in Eq. (8). Then, (R,S) satisfy the system of equations

⎧
⎨

⎩

∑
n≥1 an

∑
j≥1

(
n−1
2j−1

)(
2j
j

)
RjSn−2j = 2

∑
n≥1 an

∑
j≥0

(
n−1
2j

)(
2j
j

)
RjSn−2j−1 = 0

(74)

Consider now the 1-cut potential

V (x) =
x2

2
−

∞∑

n=1

an
xn

n
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Then, Eq. (74) gives the system of non-linear equations for (R,S)
⎧
⎨

⎩

2R = 2 +
∑

n≥1 an

∑
j≥1

(
n−1
2j−1

)(
2j
j

)
RjSn−2j

S =
∑

n≥1 an

∑
j≥0

(
n−1
2j

)(
2j
j

)
RjSn−2j−1

(75)

Using
(
n− 1
2j − 1

)(
2j
j

)

= 2
(
n− 1
j − 1

)(
n− j

j

)

it follows that (R,S) satisfy the system of non-linear equations (13).
Observe that for a fixed admissible potential V , Eq. (13) may have

none or more than one real solutions for (R,S) but for small parameters
a = (a1, a2, . . .) in some �1r for small enough r,R and S become analytic func-
tions of a (see Theorem 12.1). However, it always has a unique formal solution
(R,S) ∈ (1 + A+,A+).

This proves that R = R and S = S in Theorem 1.2.
To finish the proof of Theorem 1.2, we need to prove that the coefficient

of any monomial an1
1 . . . ank

k from the power series F0 and F0 are equal. The
important point here is the fact that the each such monomial involves finitely
many a1, a2, . . . , ak and thus we may assume that all the 1-cut potential is
actually a polynomial.

Now, assume that an are all 0 for n ≥ k and consider potentials of the
form

V (x) =
x2

2
−
(

k∑

n=1

an
xn

n

)

+
x2k+2

2k + 2
.

For small real parameters a1, a2, . . . , ak the functions

gN (a1, a2, . . . , ak) =
1
N2

log

∫
HN

exp(−NTr(V (M)))dM
∫

HN
exp(−NTr(M2/2)))dM

are analytic in a1, . . . , ak on a neighborhood of 0 ∈ Rk. Since the limit g∞
exists, the limit is going to be also an analytic function in these variables. This
means that at the level of power series the coefficients must converge to the
coefficients of the limit.

On one hand expanding the gN in power series, the limiting coefficient of
an1
1 · · · ank

k is exactly the corresponding coefficient from the formal model. On
the other hand, the limiting function g∞ is obtained via the potential theory
and using the perturbation theory from Sect. 12, it is easy to see that c, b,
the solution of the system (75) are actually analytic functions of a1, . . . , ak. In
particular it means that the planar limit F0 is equal to g∞ from (28) and is
analytic, thus concluding the proof. �

Remark 6.1. From now on, whenever we have a formal potential V = x2

2 −
∑∞

n=1 an
xn

n , we will use b, c as the solution to (73), which has a unique solution
in (c, b) ∈ (1 + A+,A+).
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7. The Planar Limit F0(t) in Terms of R(t) and S(t)

This section is devoted to the proofs of Theorems 1.3 and 1.4. After we discuss
the proofs we give a main consequences of these formulae, namely the fact
that the planar limit enjoys algebricity in some cases which allows complete
description of the asymptotics of the coefficients of F0.

7.1. Proof of Theorem 1.3

In this section we will prove Theorem 1.3 and the first part of Remark 1.3. In
this section, it will be convenient to use the 1-cut potentials Ṽe and Ve given by

Ṽe(t, x) =
x2

2t
−
∑

n≥1

anx
n

n

Ve(t, x) =
x2

2
−
∑

n≥1

ant
n/2xn

n
.

For simplicity of notation in this section we will drop the dependence on
e from the writing of Ve and Ṽe.

We start by setting c(t), b(t), and c̃(t), b̃(t) to be the power series solu-
tions to (73) corresponding to potentials V, respectively Ṽ. From the fact that
V(t, x) = Ṽ(t,

√
tx), we easily get that

c̃(t) =
√
tc(t) and b̃(t) =

√
tb(t). (76)

Then Ṽ(t, x) = x2

2t − W(x) and the system satisfied by c̃(t), b̃(t) is given
by

⎧
⎨

⎩

∫ 2

−2
c̃(t)xṼ ′(t, c̃(t)x+ b̃(t)) dx

π
√

4−x2 = 2
∫ 2

−2
Ṽ ′(t, c̃(t)x+ b̃(t)) dx

π
√

4−x2 = 0.
(77)

where the derivative Ṽ ′(t, x) is taken with respect to x. Set now,

I(t) = − log c̃(t) +

2∫

−2

Ṽ(t, c̃(t)x+ b̃(t))dx
π
√

4 − x2

−
c̃(t)∫

0

s

⎡

⎢
⎣

⎛

⎝

2∫

−2

xṼ ′(t, sx+ b̃(t))dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

Ṽ ′(t, sx+b̃(t))dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦ds.

Taking the derivative with respect to t,

I ′(t) = − c̃′(t)
c̃(t)

+

2∫

−2

(c̃′(t)x+ b̃(t))Ṽ ′(t, c̃(t)x+ b̃(t))dx
π
√

4 − x2

+

2∫

−2

˙̃V(t, c̃(t)x+ b̃(t))dx
π
√

4 − x2
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−c̃′(t)c̃(t)

⎡

⎢
⎣

⎛

⎝

2∫

−2

xṼ ′(t, c̃(t)x+ b̃(t))dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

Ṽ ′(t, c̃(t)x+ b̃(t))dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦

−2b′(t)

c̃(t)∫

0

2∫

−2

2∫

−2

s(xy + 4)Ṽ ′(t, sx+ b̃(t))Ṽ ′′(t, sy + b̃(t))
4π2

√
(4 − x2)(4 − y2)

dxdy ds

−2

c̃(t)∫

0

2∫

−2

2∫

−2

s(xy + 4)Ṽ ′(t, sx+ b̃(t)) ˙̃V ′(t, sy + b̃(t))
4π2

√
(4 − x2)(4 − y2)

dxdy ds,

where ˙̃V(t, x) is the derivative with respect to t. Since ˙̃V(t, x) = − x2

2t2 , the
system (77) and Lemma 4.6, we can simplify this to

I ′(t) = − 1
2t2

2∫

−2

(c̃(t)x+ b̃(t))2dx
π
√

4 − x2

+
2
t2

c̃(t)∫

0

2∫

−2

2∫

−2

s(xy + 4)Ṽ ′(t, sx+ b̃(t))(sy + b̃(t))
4π2

√
(4 − x2)(4 − y2)

dxdy ds

= −2c̃(t)2 + b̃(t)2

2t2
+

1
t2

c̃(t)∫

0

2∫

−2

s(sx+ 2b̃(t))Ṽ ′(t, sx+ b̃(t))
π
√

4 − x2
dxds.

Next, observe that for any continuous function f : [−2c, 2c] → R with c > 0,
one has

c∫

0

2∫

−2

s(sx+ 2b)f(sx)
π
√

4 − x2
dxds

=
x=cy/s

c

c∫

0

2s/c∫

−2s/c

s(cy + 2b)f(cy)

π
√

4s2 − c2y2
dy ds

=
Fubini

c

2∫

−2

c∫

c|y|/2

s(cy + 2b)f(cy)

π
√

4s2 − c2y2
dsdy
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= c2
2∫

−2

(cy + 2b)f(cy)
√

4 − y2

4π
dy

=
y=(z−b)/c

1
4π

2c+b∫

−2c+b

(z + b)f(z − b)
√

4c2 − (z − b)2dz.

Going back to the previous equation we now have

c̃(t)∫

0

2∫

−2

s(sx+ 2b̃(t))Ṽ ′(t, sx+ b̃(t))
π
√

4 − x2
dxds

=
1
4π

2c̃(t)+b̃(t)∫

−2c̃(t)+b̃(t)

(z + b̃(t))Ṽ ′(t, z)
√

4c̃(t)2 − (z − b̃(t))2dz.

Take the derivative with respect to t and observe

d
dt

2c̃(t)+b̃(t)∫

−2c̃(t)+b̃(t)

(z + b̃(t))Ṽ ′(t, z)
√

4c̃(t)2 − (z − b̃(t))2dz

=

2c̃(t)+b̃(t)∫

−2c̃(t)+b̃(t)

b̃′(t)Ṽ ′(t, z)
√

4c̃(t)2 − (z − b̃(t))2dz

+

2c̃(t)+b̃(t)∫

−2c̃(t)+b̃(t)

(z + b̃(t))Ṽ ′(t, z)
4c̃′(t) − b̃′(t)(b̃(t) − z)
√

4c̃(t)2 − (z − b̃(t))2
dz

+

2c̃(t)+b̃(t)∫

−2c̃(t)+b̃(t)

(z + b̃(t)) ˙̃V ′(t, z)
√

4c̃(t)2 − (z − b̃(t))2dz

=

2c̃(t)+b̃(t)∫

−2c̃(t)+b̃(t)

Ṽ ′(t, z)

×
−2b̃(t)2b̃′(t) + 4c̃(t)2b̃′(t) + 4c̃′(t)c̃(t)b̃(t) + z

(
2b̃′(t)b̃(t) + 4c̃′(t)c(t)

)

√
4c̃(t)2 − (z − b̃(t))2

dz

−
2c̃(t)+b̃(t)∫

−2c̃(t)+b̃(t)

(z + b̃(t))
z

t2

√

4c̃(t)2 − (z − b̃(t))2dz.
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Changing the variable z = c̃(t)x+ b̃(t) and using the system (77), we obtain

d
dt

2c̃(t)+b̃(t)∫

−2c̃(t)+b̃(t)

(z + b̃(t))Ṽ ′(t, z)
√

4c̃(t)2 − (z − b̃(t))2dz

= 4π(b̃(t)b̃′(t) + 2c̃(t)c̃′(t)) − 2πc̃(t)2(2b̃(t)2 + c̃(t)2)/t2.

Therefore we arrive at the equation

(t2I ′(t))′ =
d
dt

(

−c̃(t)2 − b̃(t)2

2

)

+(b̃(t)b̃′(t) + 2c̃(t)c̃′(t)) − c̃(t)2(2b̃(t)2 + c̃(t)2)
2t2

= − c̃(t)2(2b̃(t)2 + c̃(t)2)
2t2

.

Since F0,e(t) = 3
4 − I(t), it implies

(t2F ′
0,e(t))

′ =
2Re(t)S2

e (t) + R2
e(t)

2
.

This is exactly the statement from (20). To prove also the statement from (19),
namely, that

F0,e(t) =
1
t

t∫

0

(t− s)(2Re(s)S2
e (s) + R2

e(s) − 1)
2s

ds,

denote the right hand side by G(t) and notice that both sides satisfy the same
differential equation, namely

(t2G′(t))′ =
2Re(t)S2

e (t) + R2
e(t)

2
.

In addition, a direct check reveals that

F0,e(0) = G(0) = 0, F ′
0,e(0) = G′(0) = a2

1/2 + a2/2

which actually follows from the fact that R(t) = 1 + a1t + O(t2) and S(t) =√
ta1 +O(t) (see for example the formulae in Appendix A).

7.2. Proof of Theorem 1.4

In this section we will prove Theorem 1.4 and the last part of Remark 1.3. It
will be convenient to use the 1-cut potentials Ṽf and Vf given by

Ṽf(x) =
x2

2
−
∑

n≥3

anx
n

n

VF(x) =
Ṽf(

√
tx)
t

=
x2

2
−
∑

k≥3

tk/2−1akx
k

k
.

As we did in the previous section, for the sake of simplicity we will drop
the dependence on f from the notation Vf and Ṽf .
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Define c(t), b(t) and c̃(t), b̃(t) the power series solutions to (73) corre-
sponding to V and Ṽ/t. Then, one can easily check that

c̃(t) =
√
tc(t), b̃(t) =

√
tb(t). (78)

The corresponding system of equations for c̃(t) and b̃(t) is
⎧
⎨

⎩

∫ 2

−2
c̃(t)xṼ ′(c̃(t)x+ b̃(t)) dx

π
√

4−x2 = 2t
∫ 2

−2
Ṽ ′(c̃(t)x+ b̃(t)) dx

π
√

4−x2 = 0.
(79)

Now set G0(t) = −t2I0,Ṽ/t. Thus

G0(t) = t2 log c̃(t) − t

2∫

−2

Ṽ(c̃(t)x+ b̃(t))dx
π
√

4 − x2

+

c̃(t)∫

0

s

⎡

⎢
⎣

⎛

⎝

2∫

−2

xṼ ′(sx+ b̃(t))dx
2π

√
4 − x2

⎞

⎠

2

+

⎛

⎝

2∫

−2

Ṽ ′(sx+ b̃(t))dx
π
√

4 − x2

⎞

⎠

2
⎤

⎥
⎦ds.

Differentiating this with respect to t and keeping in mind the system (79), we
get

G′
0(t) = 2t log c̃(t) −

2∫

−2

Ṽ(c̃(t)x+ b̃(t))dx
π
√

4 − x2

+2b′(t)

c̃(t)∫

0

2∫

−2

2∫

−2

s(xy + 4)Ṽ ′(sx+ b̃(t))Ṽ ′′(sy + b̃(t))
4π2

√
(4 − x2)(4 − y2)

dxdy ds.

(80)

Now, taking U(x) = Ṽ ′(c̃(t)x+ b̃(t)) in Lemma 4.6 and a simple change of
variables proves that the last term of (80) becomes 0. Thus, we can continue
(80) with

G′
0(t) = 2t log c̃(t) −

2∫

−2

Ṽ(c̃(t)x+ b̃(t))dx
π
√

4 − x2
.

Differentiating this with respect to t, and using again the equations from (79),
we obtain

G′′
0 (t) = 2 log c̃(t).
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In other words, integrating this twice and keeping in mind that G0(0) =
G′

0(0) = 0, we get

G0(t) = 2

t∫

0

(t− u) log c̃(u)du.

Now, one has to notice that an easy calculation yields,

t2F0(t) =
3t2

4
− t2

2
log t+ G0(t) = 2

t∫

0

(t− u) log c(u)du =

t∫

0

log Rf (u)du,

from which Theorem 1.4 follows.

7.3. Proof of Proposition 1.8

Part (a) and (b) of Proposition 1.8 follows from Theorems 1.3 and 1.4.
Part (c) and (d) follow from Proposition 1.7.

8. The Planar Limit for Extreme Edge Potentials

In this section we will compute the planar limit for five extreme formal poten-
tials.

8.1. Exact Formulae

Consider the extreme formal potentials Ve(x), V ev
e (x) ∈ Q[[[t1/2]][[x]] given by

Vev
e (x) =

x2

2
+

1
2

log(1 − tx2) =
x2

2
−

∞∑

n=1

tnx2n

2n
(81)

Ve(x) =
x2

2
+ log(1 − √

tx) =
x2

2
−
∑

n≥1

tn/2xn

n
(82)

These potentials correspond to counting planar diagrams with even respec-
tively arbitrary valency of the vertices and a fixed number of edges. Their
corresponding invariants b = Se = b(t) = Se(t) is an element of Q[[t1/2]], while
c = c(t) while Se = Se(t), Re = Re(t) and F0,e = F0,e(t) are elements of Q[[t]].
Our next proposition summarizes the algebraic properties of these elements.

Remark 8.1. For simplicity of writing, in this section we will omit the subscript
e in writing Re,Se,F0,e.

Proposition 8.2. 1. For the potential Vev
e , we have

S(t) = 0

R(t) =
1 + 4t− √

1 − 8t
8t

F0(t) =
1 − 24t+ 72t2 − (1 − 20t)

√
1 − 8t

128t2
− 3

8
log

1 − 4t+
√

1 − 8t
2

=
t

2
+

3t2

4
+ 2t3 + 7t4 +

144t5

5
+ 132t6 +

4576t7

7
+ 3432t8 +O(t10)

(83)
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2. For the potential Ve, we have

S(t) =
1 − √

1 − 12t
6
√
t

R(t) =
1 + 12t− √

1 − 12t
18t

F0(t) =
1 − 36t+ 162t2 − (1 − 30t)

√
1 − 12t

216t2
− 1

2
log

1 − 6t+
√

1 − 12t
2

= t+
9t2

4
+ 9t3 +

189t4

4
+

1458t5

5
+

8019t6

4
+

104247t7

7
+O(t9)

(84)

Proof. Solving the nonlinear system of Eq. (13) for our formal potentials Ve(x)
and Vev

e (x) seems at first an impossible task. Instead, we will use the analytic
ideas from Sect. 4 to translate this system into a more tractable one.

In Sect. 6 it was shown that Eq. (13) for (b, c2) = (S,R) are exactly
Eq. (59) for (b, c) in case of admissible analytic potentials. The proof also
works for formal potentials, too, such as our potentials Ve(x) and Vev(x).
Proposition 4.5 implies that Eq. (59) are the critical point equations for the
function H(b, c) from Eq. (57). The last function can be computed explicitly
for the two formal potentials Ve(x) and Vev(x).

To prove part (1) of the proposition, Vev
e is even so b(t) = 0. Computing

the function H gives

H(c) = log c− c2

2
− 1

4

2∫

−2

log(1 − tc2x2)dx
π
√

4 − x2

= log c− c2

2
− 1

2
log

1 +
√

1 − 4tc2

2

and thus

H′(c) =
1
2c

(

1 − 2c2 +
1√

1 − 4tc2

)

.

The solution c to H′(c) = 0 such that c(0) = 1 satisfies a quartic equation

4c4t+ c2(−1 − 4t) + t+ 1 = 0

and it is given by

c(t) =

√

1 + 4t− √
1 − 8t

8t

Given b(t) and c(t) together with (19), we get (83).
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For part (2) of the proposition, observe that By Eq. (37) we have:

H(b, c) = log c− c2

2
− b2

4
− 1

2

2∫

−2

log(1 − √
tcx− √

tb)dx
π
√

4 − x2

= log(c) − c2

2
− b2

4
− 1

2
log

1 − tb+
√

(1 − √
tb)2 − 4tc2

2
.

The critical point (b, c) satisfies the system
⎧
⎨

⎩

1 − c2 + 2tc2

(1−√
tb+

√
(1−√

tb)2−4tc2)
√

(1−√
tb)2−4tc2

= 0

−b+
√

t√
(1−√

tb)2−4tc2
= 0.

(85)

Solve for
√

(1 − √
tb)2 − 4tc2 =

√
t/b and plug it in the first equation which

becomes

1 − c2 +
2c2t

(
√
t/b)(1 − b

√
t+

√
t/b)

= 0.

In turn, this implies

c2 =
b+

√
t− b2

√
t

b+
√
t− 3b2

√
t
.

We need to pick the solution c which for t = 0 is 1 and thus

c =

√
b+

√
t− b2

√
t

√
b+

√
t− 3b2

√
t
.

We go back to the second equation of (85) and solve for c as a function of b
to get

c2 =
(1 − b

√
t)2b2 − t

4tb2
.

Equating now the two expressions of c2 in terms of b shows that

b+
√
t− b2

√
t

b+
√
t− 3b2

√
t

=
(1 − b

√
t)2b2 − t

4tb2
.

This implies that b satisfies

(−b− √
t+ b2

√
t)2(−b+

√
t+ 3b2

√
t) = 0.

There are four solutions to this equation,

1 − √
1 − 12t

6
√
t

,
1 +

√
1 − 12t

6
√
t

,
1 − √

1 + 4t
2
√
t

,
1 +

√
1 + 4t

2
√
t

.

Since b(0) = 0, this eliminates the second and the fourth solutions. To decide
which one is the right one, we notice that c(0) = 1 and this implies



Vol. 14 (2013) Analyticity of the Planar Limit of a Matrix Model 541

b =
1 − √

1 − 12t
6
√
t

and c =

√

1 + 12t− √
1 − 12t

18t
.

Now using (19) one concludes (84). �

8.2. A review of Holonomic Functions and their Asymptotics

In this section we briefly review some standard facts about holonomic functions
and their asymptotics from [35]. Recall that a formal power series

f(x) =
∞∑

n=0

anx
n (86)

is holonomic if it satisfies a linear differential equation
d∑

j=0

cj(x)f (j)(x) = 0

where cj(x) ∈ Q[x] for j = 0, . . . , d with cd(x) 	= 0. A sequence (an) is holo-
nomic if it satisfies a linear recursion

r∑

j=0

γj(n)an+j = 0

for all n ∈ N where γj(n) ∈ Q[n] with γr(n) 	= 0. It is easy to see that a
sequence (an) is holonomic if and only if the generating series (86) is holo-
nomic. Of importance to us are algebraic functions y = f(x) i.e., solutions to
polynomial equations

d∑

j=0

cj(x)yj = 0 (87)

where cj(x) ∈ Q[x] for j = 0, . . . , d and cd(x) 	= 0. Algebraic functions regular
at x = 0 are always holonomic; see for example [9]. Moreover, algebraic func-
tions regular at x = 0 have holomorphic extensions to a finite branched cover
of the complex plane branched along a finite set of algebraic points, given by
the roots of the discriminant of the polynomial (87) with respect to y. Locally,
at a point x = x0 ∈ Q of the field of algebraic numbers, an algebraic function
y(x) has a convergent power series expansion of the form

y(x) =
∞∑

n=0

cn/d(x− x0)n/d

for some natural number d and for algebraic numbers cn/d. This is the content
of Puiseux’s theorem [8,40]. If y(x) is regular at x = 0 with Taylor series

y(x) =
∞∑

n=0

anx
n

the asymptotics of the sequence (an) can be computed explicitly by the sin-
gularities of y(x) which are nearest to x = 0. The computation also includes
the Stokes constants. A computer implementation of the rigorous computation
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is available from [24]. In fact, (an) is a sequence of Nilsson type discussed in
detail in [20].

8.3. Holonomicity and Asymptotics

In this section we illustrate Proposition 1.8 with the concrete examples of the
extreme potentials and study the coefficients of the Taylor series (fn) of the
planar limit written as

F0(t) =
∞∑

n=1

fnt
n.

Proposition 8.3. (1) For the potential Vev
e ,R,G0 = G0(t) = F ′

0(t) and F0

satisfy

4R2t− R(1 + 4t) + t+ 1 = 0

64t3G2
0 + (48t2 − 24t+ 2)G0 + 9t− 1 = 0

3 + 6(4t− 1)F ′
0 + 2t(8t− 1)F ′′

0 = 0, F0(0) = 0, F ′
0(0) = 1/2

(n+ 3)(n+ 1)fn+1 − 4n(1 + 2n)fn = 0, n ≥ 1, f1 = 1/2.

(88)

In addition,

F0(t) =
∑

n≥1

3(2n− 1)!2n−1

n!(n+ 2)!
tn, (89)

and for large n, the asymptotics of fn is

fn =
3

4
√
π

8n

n7/2

(

1 − 25
8n

+
945

128n2
− 16275

1024n3
+O

(
1
n4

))

. (90)

(2) For the potential Ve, we have that S,R,G0 = F ′
0 and F0 satisfy

3
√
tS2 − S +

√
t = 0

9tR2 − (12t+ 1)R + 1 = 0

108t3G2
0 + (108t2 − 36t+ 2)G0 + 27t− 2 = 0

3 + 3(6t− 1)F ′
0 + t(12t− 1)F ′′

0 = 0, F0(0) = 1, F ′
0(0) = 1

(n+ 3)(n+ 1)fn+1 − 6n(1 + 2n)fn = 0, f1 = 1.

(91)

In addition,

F0(t) =
∑

n≥1

2(2n− 1)!3n

n!(n+ 2)!
tn, (92)

and for large n,

fn =
2√
π

12n

n7/2

(

1 − 25
16n

+
945

256n2
− 16275

2048n3
+O

(
1
n4

))

. (93)

Proof. It is straightforward to see that (88) follows from (83) while (91) from
(84).
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For (1), a direct check proves that F0(t) solves the third equation of (88).
This immediately implies the recurrence on fn and then the closed formula in
(89) which in turn combined with Stirling’s formula leads to (92).

Another way of checking the closed formula (89) is the following. Observe
by a direct calculation that

(8t2 − t)F ′′′
0 (t) + (28t− 4)F ′′

0 (t) + 12F ′
0(t) = 0,

F0(0) = 0, F ′
0(0) = 1/2, F ′′

0 (0) = 3/2.

This is a hypergeometric equation, and its solution is given by

F0(t) =
1
2
t3F2(1, 1, 3/2; 2, 4; 8t) =

∑

n≥1

3(2n− 1)!2n−1

n!(n+ 2)!
tn,

where 3F2(a1, a2, a3; b1, b2;x) stands for the hypergeometric function with
parameters a1, a2, a3 and b1, b2. This is exactly (89). Using Stirling’s formula
(see [32]), one can easily deduce (89).

For (2), use the same proof as for (1). �

8.4. Three More Flavors of The Extreme Edge Potentials

In this section we will investigate the following three flavors of the extreme
edge potentials (82) and (81), given by

V1(x) =
(1 + t)x2

2
+

1
2

log(1 − tx2) =
x2

2
−
∑

n≥2

tnx2n

2n
(94)

V2(x) =
x2

2
+

√
tx+ log(1 − √

tx) =
x2

2
−
∑

n≥2

tn/2xn

n
(95)

V3(x) =
(1 + t)x2

2
+

√
tx+ log(1 − √

tx) =
x2

2
−
∑

n≥3

tn/2xn

n
. (96)

These correspond to the counting of planar diagrams with a fixed number of
edges and vertices of even valency greater or equal to 4, or arbitrary valency
greater or equal to 2, respectively arbitrary valency greater or equal to 3.

Proposition 8.4. (1) For the potential V1, we have

S(t) = 0 (97)

R(t) =
1 + 5t− √

(1 + t)(1 − 7t)
8t(1 + t)

(98)

F0(t) =
1 − 22t+ 49t2 − (1 − 19t)

√
(1 + t)(1 − 7t)

128t2
− 1

8
log(1 + t) (99)

−3
8

log
1 − 3t+

√
(1 + t)(1 − 7t)
2

=
t2

2
+

5t3

6
+

23t4

8
+

51t5

5
+

124t6

3
+

2515t7

14
+

13245t8

16
+O(t9).

(100)
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(2) For the potential V2, we have

S(t) =
1 − 5t− √

1 − 10t+ t2

6
√
t

(101)

R(t) =
1 + 14t+ t2 − (1 + t)

√
1 − 10t+ t2

18t
(102)

F0(t) =
1 − 32t+ 96t2 + 76t3 + t4 − (1 − 27t− 27t2 + t3)

√
1 − 10t+ t2

216t2

− log
1 + t+

√
1 − 10t+ t2

2
(103)

=
t

2
+

3t2

4
+

8t3

3
+ 12t4 +

312t5

5
+

1076t6

3
+

15528t7

7
+ 14508t8 +O(t9).

(104)

(3) For the potential V3, we have

S(t) =
1 − 4t− √

1 − 8t− 8t2

6(1 + t)
√
t

(105)

R(t) =
1 + 16t+ 16t2 − (1 + 16t)

√
1 − 8t− 8t2

18t(1 + t)2
(106)

F0(t)

=
1 − 28t+ 6t2 + 176t3 + 142t4 − (1 − 24t− 78t2 − 52t3)

√
1 − 8t− 8t2

216t2(1 + t)2

+
1
2

log(1 + t) − log
1 + 2t+

√
1 − 8t− 8t2

2
(107)

=
t2

2
+

3t3

2
+

47t4

8
+

139t5

5
+

430t6

3
+

11175t7

14
+

75149t8

16
+O(t9). (108)

Proof. We follow the same approach as in Proposition 8.2.
For (1), the function H becomes

H(c) = log c− (1 + t)c2

2
− 1

4

2∫

−2

log(1 − c2tx2)dx
π
√

4 − x2

= log c− (1 + t)c2

2
− 1

2
log

1 +
√

1 − 4c2t
2

and thus

H′(c) =
1
2c

(

1 − 2(1 + t)c2 +
1√

1 − 4c2t

)

.

The solution to H′(c) = 0 with c(0) = 1 is

c(t) =

√
1 + 5t− √

(1 + t)(1 − 7t)

2
√

2t(1 + t)
.

From this, using (19), gives (99).
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For (2), we have

H(b, c) = log c− c2

2
− b2

4
− b

√
t

2
− 1

2

2∫

−2

log(1 − √
tcx− √

tb)dx
π
√

4 − x2

= log(c) − c2

2
− b2

4
− b

√
t

2
− 1

2
log

1 − √
tb+

√
(1 − √

tb)2 − 4tc2

2
.

The critical point (b, c) satisfies the system
⎧
⎪⎨

⎪⎩

1 − c2 + 2tc2

(1−√
tb+

√
(1−√

tb)2−4tc2)
√

(1−√
tb)2−4tc2

= 0

−b− √
t+

√
t√

(1−√
tb)2−4tc2

= 0.

The solution to this system such that c(0) = 1 is given by

c(t) =

√
1 + 14t+ t2 − (1 + t)

√
1 − 10t+ t2

3
√

2t
and

b(t) =
1 − 5t− √

1 − 10t+ t2

6
√
t

Then (19) together with some simplifications give (103).
For (3) we have

H(b, c) = log c− (1 + t)c2

2
− (1 + t)b2

4
− b

√
t

2
− 1

2

2∫

−2

log(1 − √
tcx− √

tb)dx
π
√

4 − x2

= log(c) − (1 + t)c2

2
− (1 + t)b2

4
− b

√
t

2

−1
2

log
1 − √

tb+
√

(1 − √
tb)2 − 4tc2

2
.

The critical point (b, c) satisfies the system
⎧
⎨

⎩

1 − c2 + 2tc2

(1−√
tb+

√
(1−√

tb)2−4tc2)
√

(1−√
tb)2−4tc2

= 0

−(1 + t)b− √
t+

√
t√

(1−√
tb)2−4tc2

= 0,

with the solution satisfying c(0) = 1, being

c(t) =

√
1 + 16t+ 16t2 − (1 + 16t)

√
1 − 8t− 8t2

3(1 + t)
√

2t
and

b(t) =
1 − 4t− √

1 − 8t− 8t2

6(1 + t)
√
t

.

Finally, using (19) one obtains (107). �
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Next we present algebraic and differential equations satisfied by G0 =
F ′

0(t) and the recursion relation for the Taylor coefficients (fn) of F0(t) and
their exact asymptotic expansions.

Proposition 8.5. (1) For the potential V1,G0 satisfies

−2t+ 13t2 + 16t3 + 2(1 − 9t+ 3t2 + 45t3 + 32t4)G0 + 64t3(1 + t)2G2
0 = 0,

and F0(t) satisfies

t(8 + 7t) − 2(3 − 4t− 21t2 − 14t3)F ′
0 − 2t(1 − 5t− 13t2 − 7t3)F ′′

0 = 0,
(109)

with F0(0) = 0,F ′
0(0) = 0 and (fn) satisfies

49n2(1 + n)fn + 7(1 + n)2(32 + 21n)fn+1 + (2 + n)(544+543n+139n2)fn+2

+(3 + n)(224 + 157n+ 33n2)fn+3 − 8(2 + n)(4 + n)(6 + n)fn+4 = 0,

with f1 = 0, f2 = 1/2, f3 = 5/6. For large n, the asymptotics of (fn) is
given by

fn =
147
512

√
7
2π

7n

n7/2

(

1 − 105
32n

+
16065
2048n2

− 1109115
65536n3

+O

(
1
n4

))

. (110)

(2) For the potential V2,G0 satisfies

1 − 13t+ 22t2 − 9t3 − t4 + (−2 + 32t− 108t2 + 76t3 + 2t4)G0

−108t3G2
0 = 0 (111)

and F0(t) satisfies

3 − 5t+ t2 + t3 − 2(3 − 17t+ 5t2 + t3)F ′
0 − 2t(1 − 11t+ 11t2 − t3)F ′′

0 = 0,

with F0(0) = 0,F ′
0(0) = 1/2 and (fn) satisfies

(−2 + n)(−1 + n)nfn − 2(−1 + n)(1 + n)(2 + 5n)fn+1

−(2 + n)(44 + 25n+ 5n2)fn+2 + 4(3 + n)(116 + 91n+ 17n2)fn+3

−(4 + n)(1326 + 701n+ 89n2)fn+4 + 2(5 + n)(6 + n)(85 + 19n)fn+5

−3(5 + n)(6 + n)(8 + n)fn+6 = 0,

with f1 = 1/2, f2 = 3/4, f3 = 8/3, f4 = 12, f5 = 312/5. Moreover, for
large n, the asymptotics of (fn) is given by

fn =
2

3
√
π

4

√
2
3

(5 + 2
√

6)n

n7/2

(

1 − 45
√

6
32n

+
8435

1024n2
− 238805

√
6

32768n3
+O

(
1
n4

))

.

(112)

(3) For the potential V3,G0 satisfies

−2t+ 11t2 + 65t3 + 107t4 + 81t5 + 27t6 + (2 − 20t− 22t2 + 184t3 + 560t4

+700t5 + 432t6 + 108t7)G0 + (108t3 + 540t4 + 1080t5 + 1080t6 + 540t7

+108t8)G2
0 = 0 (113)
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and F0(t) satisfies

−8t− 35t2 − 44t3 − 16t4 − 6(−1 + 15t2 + 34t3 + 28t4 + 8t5)F ′
0

−2(−t+ 5t2 + 29t3 + 47t4 + 32t5 + 8t6)F ′′
0 = 0,

with F0(0) = 0,F ′
0(0) = 0 and (fn) satisfies

128n2(2 + n)fn + 32(1 + n)(66 + 97n+ 27n2)fn+1

+8(2 + n)(1836 + 1568n+ 305n2)fn+2

+4(3 + n)(9972 + 6193n+ 929n2)fn+3

+(4 + n)(54276 + 26661n+ 3257n2)fn+4

+(5 + n)(38220 + 15479n+ 1595n2)fn+5

+3(6 + n)(3972 + 1349n+ 121n2)fn+6

+5(7 + n)(36 + 5n+ n2)fn+7 − 8(6 + n)(8 + n)(10 + n)fn+8 = 0

with f1 = 0, f2 = 1/2, f3 = 3/2, f4 = 47/8, f5 = 138/5, f6 = 430/3, f7 =
11175/14. Moreover, for large n, the asymptotics of (fn) is given by

fn = c
(4 + 2

√
6)n

n7/2

(

1 − 5
(
62 − 23

√
6
)

8n
+

35
(
4567 − 1858

√
6
)

64n2

−35
(
2608410 − 1064767

√
6
)

512n3
+O

(
1
n4

))

, (114)

with

c =
32

3
√

(267 + 109
√

6)π
.

Remark 8.6. Notice here that the exponential rates change depending on the
counting problem at hand. Excluding just a few types of vertices leads to
different exponential behavior. It is worth pointing out that in

fn ∼ C
t0

−n

n3−γ

although the exponential growth rate t0 depends on the details of the model,
the exponent γ is universal, as was observed in [27] and also in [3, Sect. 2].

The recurrence relations for the coefficients (fn) are not in general of
the lowest degree. However we did not attempt to simplify them even further
because they are easily deduced from the differential equations satisfied by F0.

Remark 8.7. The linear recursions for (fn) or the linear differential equation
for F0 cannot compute the Stokes constants, i.e., the leading terms in the
asymptotic expansion (110).

It is the algebricity of F ′
0(t) which uniquely determines the Stokes con-

stants. In the case at hand the Stokes constants come from the explicit expres-
sions of F0.
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Proof. The results from Eqs. (109), (111) and (113) follow straightforwardly
from Eqs. (99), (103) and (107).

The idea of proving these asymptotics is based on the analysis of singu-
larities as explained in [19]. This is particularly tractable as we have explicit
expressions for the planar limits.

For V1, from (99) one can see that the singularities of F0 are at t0 = 1/7
and t0 = −1. The smallest singularity gives the leading terms. In our case the
expansion of F0 near t0 = 1/7 is

1
16

(−7 − 12 log(2) + 8 log(7)) − 3(1 − 7t)
64

+
137(1 − 7t)2

1024

− 49
320

√
7
2
(1 − 7t)5/2 +

5569(1 − 7t)3

12288
−

343
√

7
2 (1 − 7t)7/2

1024

+
105473(1 − 7t)4

131072
−

51793
√

7
2 (1 − 7t)9/2

98304
+O((1 − 7t)5).

Since the main contribution to the asymptotics of the coefficients is given
by the half powers, combined with

(1 − x)α =
∞∑

k=0

(−1)k

(
α

k

)

xk (115)

applied for α = 5/2, 7/2, 9/2, after a simple asymptotics expansion give the
result of (110).

For V2, the same argument works in this case for the other examples.
Using (103), we can see that the singularities of F0 are t0 = 5 − 2

√
6 and

5+2
√

6. For the asymptotics of the coefficients the leading one is the smallest,
namely t0 = 5 − 2

√
6. The expansion near t0 is in this case

(
23
12

−
√

6 − log(3 −
√

6)
)

+

⎛

⎝−2 +
7
√

2
3

3

⎞

⎠
(

1 − t

t0

)

+
1
36

(15 − 4
√

6)
(

1 − t

t0

)2

− 16
45

(
2
3

)1/4 (

1 − t

t0

)5/2

+
1
27

(
9 + 2

√
6
)(

1 − t

t0

)3

− 1
63

√

1008 + 1270

√
2
3

(

1 − t

t0

)7/2

+
(

14
27

+
1√
6

)(

1 − t

t0

)4

−

√

1089936 + 1337137
√

2
3

(
1 − t

t0

)9/2

1296

+O

((

1 − t

t0

)5
)

.

Considering the coefficients of the half powers, and noting that 1/t0 =
(5 + 2

√
6), one gets (112).
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For V3, we proceed similarly. From (107), observe that the singularities
of F0 are t0 = 1

4 (−2 +
√

6) and 1
4 (−2 − √

6). The one with smallest absolute
value is t0 = 1

4 (−2 +
√

6). The expansion near this point is given by
(

23
12

−
√

6 +
1
2

log
(

2
3

(
2 +

√
6
)))

+
1
18

(
357 − 146

√
6
)(

1 − t

t0

)

+

(
2539
12

− 259

√
2
3

)(

1 − t

t0

)2

−
256

(
1 − t

t0

)5/2

45
√

267 + 109
√

6

+
1
54

(
122589 − 50038

√
6
)(

1 − t

t0

)3

−
1472

(
1 − t

t0

)7/2

21
√

7929 + 3237
√

6

+
1

216

(
5233579 − 2136536

√
6
)(

1 − t

t0

)4

−
16520

(
1 − t

t0

)9/2

81
√

26163 + 10681
√

6

+O

((

1 − t

t0

)5
)

from which, noticing that 1/t0 = 4 + 2
√

6 one can deduce (114). �

9. The Planar Limit for Extreme Face Potentials

Consider the extreme formal potentials

Vev
f (x) =

x2

2
−
∑

n≥4

tn−1x2n

2n
(116)

Vf(x) =
x2

2
−
∑

n≥3

tn/2−1xn

n
. (117)

We consider now the case of extremal potentials and compute the corre-
sponding planar limit.

Remark 9.1. For simplicity, in this section we will drop the subscript f from
the writings of Rf ,F0,f ,Vf .

Proposition 9.2. (1) For the potential Vev, the planar limit F0(t) has the fol-
lowing ten terms in the Taylor expansion

F0(t) =
t

2
+

47t2

24
+

49t3

4
+

11839t4

120
+

9283t5

10
+

3260543t6

336

+
18387797t7

168
+

941448191t8

720

+
490223647t9

30
+

93171535189t10

440
+O(t11)

and its radius of convergence is t0 = 4−3 3√2
4 . In addition, if fn is the

coefficient of tn in the Taylor expansion of F0, then the asymptotic is
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fn =
1
3

√

2 3
√

2 − 1
π

(
4

4−3 3√2

)n

n7/2

×
(

1 − 243 − 8 3
√

2
72n

+
91881 − 2640 3

√
2 − 5696 3

√
4

10368n2
+O

(
1
n3

))

.

(118)

(2) For the potential V, the planar limit F0 has the Taylor expansion

F0(t) =
7t
6

+
109t2

8
+

15631t3

60
+

256629t4

40
+

38720767t5

210

+
658811733t6

112
+O(t7).

The planar limit has radius of convergence given by t0, the only positive
root of the polynomial equation

−11 − 128t+ 41088t2 − 20480t3 + 4096t4 = 0.

The coefficient fn of tn from the expansion of F0 has the asymptotic
expansion

fn ∼ c
(1/t0)n

n7/2

(

1 +
d1

n
+
d2

n2
+O

(
1
n3

))

, (119)

with

c =

√
34133 − 914556t0 + 449856t20 − 89344t30

176868π

d1 = −36145645 + 79913928t0 − 39094848t20 + 7808512t30
11319552

d2 =
7806311269 + 20984001752t0 − 10129539392t20 + 2006727168t30

1026306048
Numerically,

t0 = 0.0180827901833 . . .
1/t0 = 55.3012001942 . . .

c = 0.1786898225 . . .
d1 = −3.3197404318 . . .
d2 = 7.9727292073 . . . .

Proof. For part (1), we will find the singularities of R(t) = c2(t) and then
expand it around its singularities nearest to the origin, as explained in [20].

First, notice that

H(c) = log(c) − c2 − 1
2t

log
1 +

√
1 − 4tc2

2
and H′(c) = 0 implies that the equation satisfied by R = c2 is

1 − R − t2 + 4R2t2 + 4Rt4 − 16R2t4 + 16R3t4 = 0. (120)
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Our condition is that R(0) = 1 and this determines the branch near 0. One
can actually find the solution explicitly, however that is not very useful. The
singularities of R are at the points where the discriminant of (120) vanishes.
That means that the singularities are solutions to the polynomial equation

−16(−5t2 + 96t3 − 96t4 + 32t5) = 0.

The latter are given by
{

0,
1
2

(

2 − 3
22/3

)

, 1 +
3
(
1 − i

√
3
)

422/3
, 1 +

3
(
1 + i

√
3
)

422/3

}

.

The singularity of R is thus t0 = 1
2

(
2 − 3

22/3

) ≈ 0.0550592. The series expan-
sion of R near t0 is

R(t) =
1
10

(
7 + 4 3

√
2 + 3 3

√
4
)

− 104976
1574640

√

15
(
9 + 8 3

√
2 + 6 3

√
4
)(

1 − t

t0

)1/2

+
17496

1574640

(
38 + 36 3

√
2 + 27 3

√
4
)(

1 − t

t0

)

− 1944
1574640

√

15
(
28569 + 23328 3

√
2 + 17746 3

√
4
)(

1 − t

t0

)3/2

+
648

1574640

(
996 + 972 3

√
2 + 749 3

√
4
)(

1 − t

t0

)2

− 54
1574640

√

15
(
37321489 + 30114648 3

√
2+30114648 3

√
4
)(

1 − t

t0

)5/2

+O

((

1 − t

t0

)4
)

.

Furthermore, the simplest way to proceed from here is to notice that F0(t)/t2

differentiated three times is R′(t)/R(t). This in particular means that the sin-
gularities of F0 are the same as the ones of R and eventually the zeros of R.
Since the zeros of R are only ±1, it follows that the singularity of F0 is also
t0. The expansion of the third derivative of F0(t)/t2 near t0 is thus

−1
3

√
1
5

(
832 + 664 3

√
2 + 176 3

√
4
)
/

√

1 − t

t0
− 424 + 308 3

√
2 + 256 3

√
4

135

+

√
19984 + 16062 3

√
2 + 12740 3

√
4

27

√

1 − t

t0
− 12008 + 7336 3

√
2 + 7472 3

√
4

3645

×
(

1 − t

t0

)

−
√

113890440 + 92086727 3
√

2 + 76015706 3
√

4
1458

√
2

(

1 − t

t0

)3/2

+O
((

1 − t

t0

))

.
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Using (115), we can deduce the behavior of the coefficients of the third deriv-
ative of F0(t)/t2 and then a simple exercise leads to the asymptotics of the
coefficients of F0 from (118).

For part (2) we proceed similarly. This time,

H(b, c) = log(c) − c2 − b2

2
− b

2
√
t

− 1
2t

log

⎛

⎝
1 − b

√
t+

√
(1 − b

√
t)2 − 4tc2

2

⎞

⎠ .

From the critical system satisfied by b and c eliminate b and then consider
R = c2 to arrive at the equation satisfied by R:

144R4t2 + R3t(60 − 192t) + R2(−2 − 52t+ 88t2)
+R(1 + 15t− 16t2) − (−1 + 2t− t2) = 0. (121)

We are interested here in the branch which at 0 is 1. The singularity points of
R are at the zeros of the discriminant. These are in our case the roots of

−11 − 128t+ 41088t2 − 20480t3 + 4096t4.

The solution we are interested in is the only solution t0 in (0, 1). Approxi-
mately, t0 ≈ 0.0180827901 . . .. The value of R0 = R(t0) can be found in terms
of t0 as

R0 =
1
11

+
856t0
11

− 1280t20
33

+
256t30
33

.

Using Newton’s method described in [19, VII 7] one can see that the singularity
of R is of square root near t0. To find the expansion, write

R(t) = R0 +
M∑

k=1

ak

(

1 − t

t0

)k/2

where M is the desired level of approximation. Plug this into Theorem 1.4,
expand everything near t0, match the coefficients and then solve the system
thus obtained for ak. In our case we can take for simplicity M = 3 and solve
for a1, a2, a3. The system in this case is of the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2
1v13 + v21 = 0

2a2v13 + a2
1v14 + v22 = 0

2a3a1v13 + a2
2v13 + 3a2

1a2v14 + a4
1v15 + a2v22 + a2

1v23 + v31 = 0
2a4a1v13 + 2a2a3v13 + 3a1(a2

2 + a1a3)v14 + 4a3
1a2v15 + a3v22

+2a1a2v23 + a3
1v24 + a1v32 = 0,

2a5a1v13 + (a2
3 + 2a2a4)v13 + (a3

2 + 6a1a2a3 + 3a2
1a4)v14 + 6a2

1a
2
2v15

+4a3
1a3v15 + a4v22

+a2
2v23 + 2a1a3v23 + 3a2

1a2v24 + a4
1v25 + a2v32 + a2

1v33 = 0
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where the matrix (vij)i=1,3;j=1,5 with coefficients in Q(t0) is given in reduced
form by

⎡

⎢
⎢
⎢
⎢
⎣

0 0
17+64t0−64t2

0
8 72t0 144t20

−3595+23184t0−10944t2
0+2048t3

0
1584

23−10903t0+5440t2
0−1088t3

0
33 −9 − 16t0 + 32t20 −84t0 −288t20

1769−21424t0+12352t2
0−2048t3

0
17424

−2+631t0−320t2
0+64t3

0
33

3−64t2
0

8 12t0 144t20

⎤

⎥
⎥
⎥
⎥
⎦
.

There are two different solutions for a1, a positive and a negative one.
The appropriate one is the negative one in our situation because R has only
non-negative coefficients (see [4] for a proof of this). Once a1 is solved, the
other coefficients are determined automatically in a unique way. Also notice
here that a1 is a square root of a number in Q(t0), and that all ak for even k
are in Q(t0), while ak for k odd are in Q(t0)/a1.

Now given the expansion of R near t0, the rest follows as in the previous
case. Namely, we can find the expansion of R′(t)/R(t) near t0 and thus the
asymptotics of the coefficients for R′(t)/R(t). In turn, since F0(t)/t2 differen-
tiated three times is exactly R′(t)/R(t), the proof of (119) follows straightfor-
wardly.

Worth mentioning is the fact that the constant C from (119) is C =
− a1

2
√

πR0
, which explains the square root expression of C, while the other con-

stants d1 and d2 are in Q(t0). �

Remark 9.3. 1. The expansion in (119) can be improved to

fn ∼ C
(1/t0)n

n7/2

(

1 +
M∑

l=1

dl

nl
+O

(
1

nM+1

))

,

where C is the one from (119) and the constants dn are actually in Q(t0).
2. F ′′′

0 is an algebraic function and this determines the Stokes constants
in the previous result. However the algebraic equation is very long and
this is the reason for not including it here. In addition, F0 also is the
solution to some algebraic equation, though this is very long either.
The differential equation satisfied by F0 implies a recurrence relation
for the coefficients (fn) which is again very long, thus not included.

10. Other Examples of Planar Limits

Among other computations we mention here the case of counting planar dia-
grams with vertices of valences 3 or 4. This corresponds to the case of potentials
given by

V1(x) =
x2

2
− t3/2x

3

3
− t2

x4

4
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for the counting of diagrams with a fixed number of edges. The problem of
counting planar diagrams with a fixed number of faces corresponds to the
potential

V2(x) =
x2

2
− t1/2x

3

3
− t

x4

4
.

The calculations are very similar to the ones for the extreme potentials in
Sects. 8 and 9. The results are as follows. For V1, the asymptotics of the coef-
ficients fn of F0 are given by

fn = C
(1/t0)n

n7/2

(

1 +
d1

n
+
d2

n2
+O

(
1
n3

))

where t = t0 is the closest root to 1/5 of the polynomial equation

0 = 6912 − 13824t− 146592t2 − 239488t3 − 2602569t4 − 4300752t5

+79091888t6 + 304167552t7 + 410284704t8 − 1349207040t9

−7615156224t10 − 4603041792t11 + 31506516736t12,

and C, d1, d2 ∈ Q(t0) are given numerically as

t0 = 0.2094195368 . . .
1/t0 = 4.7751036758 . . .
C = 1.4826787729 . . .
d1 = −7.2166440681 . . .
d2 = 37.5616277128 . . . .

Similarly for the potential V2 we have

fn = C
(1/t0)n

n7/2

(

1 +
d1

n
+O

(
1
n2

))

where t0 is the closest root to 0.023 of the polynomial equation

0 = −43625 − 614400t+ 89812992t2 + 895478272t3 − 3041722368t4

−11466178560t5 + 32248627200t6.

In addition, C, and d1 ∈ Q(t0) are numerically approximated as

t0 = 0.02305646139 . . .
1/t0 = 43.3717899396 . . .
C = 0.2023938212 . . .
d1 = −3.2617202693 . . .

In both cases one can compute the asymptotics of the planar limit in the form

fn = C
(1/t0)n

n7/2

(

1 +
M∑

p=1

dp

np
+O

(
1

nM+1

))

for any M ≥ 1.
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11. Analyticity of the Planar Limit

In this section we prove Theorem 1.1 and some consequences. Let us introduce
some notation. For a given sequence a = {an}n≥1 in one of the spaces �1r(N),
define

α(a) = sup
n≥1

|an|1/n.

Theorem 11.1. 1. For even potentials

V(x) =
x2

2
−
∑

n≥1

a2nx
2n

2n
,

if α(a) <
√

8, then the planar limit Fev
0 (a) is absolutely convergent as a

power series in infinitely many variables. In particular F0 is analytic on
Bev

1/
√

8
.

2. For the potential

V(x) =
x2

2
−
∑

n≥1

anx
n

n

if α(a) <
√

12, then F0(a) is an absolutely convergent series in infinitely
many variables. In particular F0 is analytic on B1/

√
12.

Proof. We can write

Fev
0 (a) =

∞∑

n=1

⎛

⎜
⎝

∑

λ	2n
λ has only even blocks

cλaλ

⎞

⎟
⎠

F0(a) =
∞∑

n=1

(
∑

λ	2n

cλaλ

)

where the inner sum is over partitions of size 2n. Note that cλ ≥ 0. Now if
|an| ≤ rn/2, then

∑

λ	2n
λ has only even blocks

cλ|aλ| ≤ rn
∑

λ	2n
λ has only even blocks

cλ

and
∑

λ	2n

cλ|aλ| ≤ rn
∑

λ	2n

cλ.

Hence, in order to compute the radius of convergence we need to compute
the radius of convergence of the planar limit F0 for the case of an = rn/2.
Similarly, for the radius of convergence of Fev

0 it suffices to look at the case
a2n = rn and a2n+1 = 0.

Now, in these particular cases, according to Proposition 8.3, the radius
of convergence of Fev

0 is 1/8 while the one of F0 is 1/12. In fact, it is easy to



556 S. Garoufalidis and I. Popescu Ann. Henri Poincaré

see that the coefficient fn of tn in Fev
0 (t) satisfies fn ≤ 8n and the coefficient

fn of tn in F0(t) satisfies fn ≤ 12n. Consequently, we have that
∑

λ	2n
λ has only even blocks

cλ ≤ 8n

and
∑

λ	2n

cλ ≤ 12n.

Therefore,

cλ ≤ 8n for any partition λ of size 2n with only even blocks

and in general

cλ ≤ 12n for any partition λ of size 2n.

Now, a celebrated Hardy and Ramanujan (1918) result shows that the num-
ber of partitions of size k is asymptotically 1

4k
√

3
eπ

√
2k/3(1 + o(1)) ([2]). From

this it follows easily that the series Fev
0 converges for any r < 1/8 and Fev

0

converges for any r < 1/12 which concludes the proof. �

Given a power series in the form

V(x) =
x2

2
−
∑

n≥1

anx
n

n

we set

α(V) = sup
n≥1

|an|1/n.

It is clear that V is analytic near 0 if and only if α(V) < ∞. With this notation
we have the following corollary which confirms ’t Hooft’s conjecture. For the
following statement we denote the planar limit Fev

0 (t) and F0(t) to be the
planar limits obtained by replacing an by tn/2an.

Corollary 11.1. If V is even then Fev
0 (t) has radius of convergence at least

1

8
√

α(V)
.

For arbitrary potentials V,F0(t) has radius of convergence 1

12
√

α(V)
.

Both of these bounds are sharp.

The fact that these bounds are sharp, follow from Proposition 8.2 or
Proposition 8.3. As made clear from the examples in Proposition 8.4, for the
same α(V), the radius of convergence can be larger than the one given in this
corollary.

Remark 11.2. The analyticity of F0 and Fev
0 in infinitely many variables can

be deduced also from the perturbation result in Theorem 12.1, though without
any estimate on the radius of convergence.
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Remark 11.3. The reader might wonder what happens with the planar limit
if instead of considering the potentials V(x) = x2

2 − ∑
n≥1

anxn

n we consider

the potentials V(x) = x2

2 − ∑
n≥1 anx

n. In this case the extreme potentials
are given by the case where an = tn/2 and this is V(x) = x2/2 − 1/(1 − x

√
t).

It turns out after some analysis that the radius of convergence of F0(t) in
this case is given by t0, which is the only solution in (0, 1) of the polynomial
equation

0 = −226492416 + 962592768t+ 34574598144t2 + 334387408896t3

+7450906184352t4 + 21095006644064t5 + 130097822364531t6

+55792303752096t7 + 67902575063040t8 + 19100742451200t9

+6115295232000t10.

Numerically this is approximately t0 = 0.04955391 . . .. In this case, the planar
limit as a function of the coefficients an is an analytic function on B√

t0 .

Remark 1.4. It would be interesting to know what happens with the case of
sequences an which are not in �1r. Apparently the �1r is important for the well
definition of convergent geometric series in infinitely many variables.

12. Perturbation Theory

The main result of this section is a stability result. It says that given a potential
whose equilibrium measure is one interval, then, under some non-degeneracy
assumptions, any small perturbation preserves the one interval support of the
equilibrium measure and in addition, the planar limit depends nicely on the
perturbation.

Before we state the result, we want to define a class of perturbations of
a given potential V . This definition is long and depends on many parameters,
however the idea is quite simple. We want to take perturbations of V so that
the maximizer of the function F can be parametrized in a nice way. The rea-
sonable way of doing this is to have perturbations close to V on some open
interval containing the support of μV and large outside this open interval.

For this purpose, assume that X is a Banach space over the reals which
will be the ambient space of the parametrization. Now, given an open subset D
of X such that 0 ∈ D, and I, J open sets of R, an integer k ≥ 1 and R, δ > 0,
we define U(k, V,D, I, J,R, δ) the class of functions V : D × R → R in two
variables, with the properties,

(1) V(0, x) = V (x)
(2) for each t ∈ D, x → V(t, x) satisfies (5)

(3) (t, x) → V(t, x) is Ck,3(D × R)
(4) sup

t∈D,x∈I
|V(t, x)−V (x)| < δ, & sup

t∈D,x∈J
‖Hessx(V(t, ·)−V (·))‖HS < δ,

(5) inf
t∈D,x/∈I

(V(t, x) − 2 log |x|) ≥ R (122)
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where, Ck,3 stands for the set of jointly differentiable functions in (t, x) with
k continuous (Fréchet) differentials in t and three continuous derivatives in x.
Also, Hessx stands for the Hessian with respect to the variable x and ‖ · ‖HS

is the Hilbert–Schmidt norm.
In words, (1), (2) and (3) of (122) define the perturbation which is

assumed of class Ck,3, while (4) means that the perturbation is uniformly
close to V on D× I while the Hessians are uniformly closed on D× J and (5)
encodes the fact that outside the interval I, the perturbation (minus the log-
arithmic term) is larger than a constant R uniformly in the parameter t ∈ D.
We introduce here the interval J because as we will see below in the proof of
Theorem 12.1, we only need the Hessians close for x on a neighborhood of the
support of μV.

The reason of introducing condition (5) in (122) instead of condition (4)
with I = R is because for large values of x, we do not need the perturbation to
be close to V . We only need the perturbation to be large for large x. Actually,
(4) and (5) constitute a weakening of the condition that the perturbation stays
close to V uniformly on the whole R.

Recall that we set

ψc,b(x) =

2∫

−2

(V ′(cx+ b) − V ′(cy + b))dy

(x− y)π
√

4 − y2
∀x ∈ [−2, 2].

Theorem 12.1. Assume that V is a C3 potential satisfying (5) with H(c, b) and
ψc,b defined by (57) and (56) respectively. Suppose that the following conditions
hold true:

1. (c, b) is the unique maximizer of H;
2. ψc,b(x) > 0, for all x ∈ [−2, 2]. (123)

Under these assumptions, there exist
• an interval I ⊂ R,
• positive numbers R0 and δ0

with the property that for any choice of
• R > R0, 0 < δ < δ0,
• an open neighborhood J of [−2c+ b, 2c+ b],
• a Banach space X,
• and V ∈ U(k, V,D, I, J,R, δ),

the following hold

(1) there exists an open D0 ⊂ D with 0 ∈ D0 and

(2) (c, b) : D0 → (0,∞) × R which is Ck such that c(0) = c, b(0) = b

(3) (c(t), b(t)) is the unique maximizer of H(t, ·)
[defined by (57) for V(t, ·)]

(4) D0 × [−2, 2] � (t, x) → ψc(t),b(t)(x) ∈ R is positive. (124)

Furthermore, the equilibrium measure for V (t, ·) has a single interval support
for t ∈ D0 and the planar limit F0,t = F0,V(t) is a Ck function on D0.
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In addition, if X is either a finite dimensional space or of the form X =
{(an)n≥1 ⊂ R :

∑
n≥1 |an|rn < ∞} for some r > 0 and V is real analytic on

a neighborhood of the support of μV such that (t, x) → V(t, x) is real ana-
lytic on a neighborhood of 0 × [−2c+ b, 2c+ b], then, we can take D0 so that
t → c(t), t → b(t) and t → F0,t are real analytic functions.

Proof. The key point of the proof is the fact that the maximizer (c, b) of H
is unique and isolated and then by perturbing a little bit the potential V ,
the maximizer of H(t, ·) is to be found near (c, b). Finding the maximizer
(c(t), b(t)) of H(t, ·) boils down to finding the critical point of this function
near (c, b). This can be achieved by the implicit function theorem and the fact
that the Hessian of H is non-degenerate near (c, b).

Now technicalities. The first thing we want to do is to prove that for the
unperturbed function H, (c, b) is a non-degenerate critical point. To do this we
want to check that the Hessian of H at (c, b) is positive definite. For simplicity
of the discussion, we will assume without any loss of generality that c = 1 and
b = 0. Now the non-degeneracy is equivalent to the fact that

⎡

⎣
2 +

∫ 2

−2
x2V ′′(x)dx

π
√

4−x2

∫ 2

−2
xV ′′(x)dx

π
√

4−x2

∫ 2

−2
xV ′′(x)dx

π
√

4−x2

∫ 2

−2
V ′′(x)dx

π
√

4−x2

⎤

⎦ (125)

is positive definite.
Recall that the critical point equations give

2∫

−2

xV ′(x)dx
π
√

4 − x2
= 2 and

2∫

−2

V ′(x)dx
π
√

4 − x2
= 0.

Integrating by parts the first of these one deduces that

2 +

2∫

−2

x2V ′′(x)dx
π
√

4 − x2
= 4

2∫

−2

V ′′(x)dx
π
√

4 − x2
.

Armed with this, the non-degeneracy of the Hessian (125) follows once we
prove the following

2∫

−2

(2 ± x)V ′′(x)dx
π
√

4 − x2
> 0. (126)

This follows from
2∫

−2

(2 ± x)V ′′(x)dx
π
√

4 − x2
=

2∫

−2

d
dx

(V ′(x) − V ′(±2))
(2 ± x)dx
π
√

4 − x2

=

2∫

−2

(V ′(±2) − V (x))dx
(±2 − x)π

√
4 − x2

= ψ(±2) > 0.
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Let M = H(c, b) be the maximum of H. For any choice of ε, r > 0 with
r > ε > 0, obviously one has

sup{H(u, v) : u > 0, v ∈ R, r2 > (u− c)2 + (v − b)2 ≥ ε2} < M. (127)

Indeed if this is not the case, then there is a sequence (cn, bn) such that r2 >
(un − c)2 + (vn − b)2 > ε2 so that limn→∞H(un, vn) = M . Passing eventually
on subsequences, we may assume that un and vn converge to u and v. Clearly
u 	= 0, otherwise H(u, v) = −∞. This implies that H(u, v) = M and at the
same time, (u, v) is within positive distance from (c, b), hence contradicting
the uniqueness of the maximizer.

Next, consider

U(x) := V (x) − 2 log |x|,
and notice that from (5) we have U(x) ≥ C > −∞ and lim|x|→∞ U(x) = +∞.
Now we use (37) to justify that

H(u, v) = −
2∫

−2

U(ux+ v)dx
2π

√
4 − x2

−
2∫

−2

log |x+ v/u|
2π

√
4 − x2

≤ −
2∫

−2

U(ux+ v)dx
2π

√
4 − x2

.

Assuming that (u−c)2 +(v−b)2 ≥ r2, it is easy to deduce that, u+ |v| ≥√
r2/2 − c2 − b2, and thus,

H(u, v) ≤ −
1∫

−1

U(ux+ v)dx
2π

√
4 − x2

−
2∫

1

U(ux+ v)dx
2π

√
4 − x2

−
−1∫

−2

U(ux+ v)dx
2π

√
4 − x2

≤ −C/3 − h(
√
r2/2 − c2 − b2) (128)

where h(x) = inf |y|≥x U(y)/6. In particular, for large r we learn that
H(u, v) < M .

Equations (127) and (128) guarantee that for any ε > 0, there exists
δ0 ∈ (0, 1) such that

H(u, v) < M − 3δ0 (129)

for all (u, v) outside a ball of radius ε around (c, b). We take R0 > 0 such that
|x| ≥ R0 implies h(x) > −C/3 −M + 3 and define I = [−R0, R0] ∪ [−2c− 1 +
b, 2c+ 1 + b]. The purpose of this choice of I is to make it a neighborhood of
the support of μV.

With these choices, for any R > R0, 0 < δ < δ0 and V ∈
U(k, V,D, I, J,R, δ), from the conditions (4) and (5) of (122), and the rea-
soning which led to (128), one gets for r =

√
2(R2

0 + b2 + c2) that

1. |H(t, u, v) −H(u, v)| < δ, for r2 > (u− c)2 + (v − b)2 > ε2

2. H(t, u, v) < M − 3 for (u− c)2 + (v − b)2 > r2.

We are led to the conclusion that for all t ∈ D,maxu>0,v∈R{H(t, u, v)}
is attained for (u, v) in the ball of radius ε around (c, b). Indeed, other-
wise, assume that there is a maximizer (u, v) outside the ball Bε(c, b). Since,
|H(t, u, v) − H(u, v)| < δ, combined with (129), implies that H(t, u, v) <
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M − 2δ. This contradicts (4) of Eq. (122) from which we gather that
H(t, c, b) − H(c, b) > −δ, or H(t, c, b) > M − δ > H(t, u, v) + δ, thus (u, v)
can not be a maximizer of H(t, ·).

The maximizer is a critical point of H(t, u, v), therefore ∇u,vH(t, ·) = 0.
To solve for (u, v), we interpret it as the definition of an implicit function
t → (c(t), b(t)). This can be done thanks to the combination of the last part
of (4) of (122), (1) of (123) and the implicit function theorem. These yield for
a set D0 ⊂ D, which contains 0 that there exists a Ck function t → (c(t), b(t))
which is the maximizer of H(t, ·). Taking a smaller subset of D0, it is easy
to show that ψc(t),b(t) > 0 on [−2, 2] and the Ck dependence of F0,t on t is a
simple consequence of (51).

In the case of analytic perturbations with X a finite dimensional space,
the only thing we need to point out is that (cf. [25]) the implicit function
theorem produces analytic versions c(t) and b(t) for t in an eventually smaller
D0. The analyticity of F0,t follows from (51).

On the other hand in the case X = {(an)n≥1 ⊂ R :
∑

n≥1 |an|rn < ∞},
one needs a bit more work. The analyticity of functions in infinitely many vari-
ables is trickier than the case of analytic functions in finitely many variables.
However, our space here is essentially �1(N) over the real numbers and for this
case many things are like in the finite dimensional cases.

What we mean here is that for the case of �1(N) over the complex num-
bers, the theory of analytic functions is treated in [26] and [36]. The main
results are that every holomorphic function on �1(N) has a power series expan-
sion and every absolutely convergent power series expansion defines a holo-
morphic function.

In our situation, the functions are real analytic (meaning they have a
power series expansion), thus by complexification they become complex ana-
lytic and therefore they are holomorphic functions. Then, for the complexifi-
cation, we know that the implicit function theorem yields that the resulting
functions c(t), b(t) and F0,t all are smooth functions of t on a small neighbor-
hood of X. Furthermore, since F is actually a holomorphic function it is not
hard to prove that the choices of c(t), b(t) and F0,t can be made holomorphic.
Using this we can conclude that the real parts of c(t), b(t) and F0,t are real
analytic. �
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Appendix A. The First Few Terms of R, S and F0

In this appendix we give the first few terms of the unique solution (R,S) ∈ A
of Eq. (13) and also of the formal planar limit F0.

S = a1 + a1a2 + 2a3 + a1a
2
2 + a2

1a3 + 4a2a3 + 6a1a4 + 6a5 + a1a
3
2 + 3a2

1a2a3

+6a2
2a3 + 8a1a

2
3 + a3

1a4 + 18a1a2a4 + 18a3a4 + 12a2
1a5 + 18a2a5
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+30a1a6 + 20a7 + a1a
4
2 + 6a2

1a
2
2a3 + 8a3

2a3 + 2a3
1a

2
3 + 32a1a2a

2
3 + 12a3

3

+4a3
1a2a4 + 36a1a

2
2a4 + 42a2

1a3a4 + 72a2a3a4 + 54a1a
2
4 + a4

1a5

+48a2
1a2a5 + 36a2

2a5 + 108a1a3a5 + 72a4a5 + 20a3
1a6 + 120a1a2a6

+80a3a6 + 90a2
1a7 + 80a2a7 + 140a1a8 + 70a9 +O(a11)

R = 1 + a2 + a2
2 + 2a1a3 + 3a4 + a3

2 + 6a1a2a3 + 4a2
3 + 3a2

1a4 + 9a2a4

+12a1a5 + 10a6 + a4
2 + 12a1a

2
2a3 + 6a2

1a
2
3 + 16a2a

2
3 + 12a2

1a2a4 + 18a2
2a4

+42a1a3a4 + 18a2
4 + 4a3

1a5 + 48a1a2a5 + 36a3a5 + 30a2
1a6 + 40a2a6

+60a1a7 + 35a8 + a5
2 + 20a1a

3
2a3 + 30a2

1a2a
2
3 + 40a2

2a
2
3 + 32a1a

3
3

+30a2
1a

2
2a4 + 30a3

2a4 + 20a3
1a3a4 + 210a1a2a3a4 + 84a2

3a4 + 63a2
1a

2
4

+90a2a
2
4 + 20a3

1a2a5 + 120a1a
2
2a5 + 132a2

1a3a5 + 180a2a3a5 + 252a1a4a5

+72a2
5 + 5a4

1a6 + 150a2
1a2a6 + 100a2

2a6 + 260a1a3a6 + 150a4a6 + 60a3
1a7

+300a1a2a7 + 160a3a7 + 210a2
1a8 + 175a2a8 + 280a1a9 + 126a10

+O(a11)

F0 =
a2
1

2
+
a2

2
+

1
2
a2
1a2 +

a2
2

4
+

1
2
a2
1a

2
2 +

a3
2

6
+

1
2
a2
1a

3
2 +

a4
2

8
+

1
2
a2
1a

4
2 +

a5
2

10

+a1a3 +
1
3
a3
1a3 + 2a1a2a3 + a3

1a2a3 + 3a1a
2
2a3 + 2a3

1a
2
2a3 + 4a1a

3
2a3

+
2a2

3

3
+ 2a2

1a
2
3 +

1
2
a4
1a

2
3 + 2a2a

2
3 + 8a2

1a2a
2
3 + 4a2

2a
2
3 + 4a1a

3
3 +

a4

2

+
3
2
a2
1a4 +

1
4
a4
1a4 + a2a4 +

9
2
a2
1a2a4 + a4

1a2a4 +
3
2
a2
2a4 + 9a2

1a
2
2a4 + 2a3

2a4

+6a1a3a4 + 7a3
1a3a4 + 24a1a2a3a4 + 6a2

3a4 +
9a2

4

8
+ 9a2

1a
2
4 +

9
2
a2a

2
4

+2a1a5 + 2a3
1a5 +

1
5
a5
1a5 + 6a1a2a5 + 8a3

1a2a5 + 12a1a
2
2a5 + 3a3a5

+18a2
1a3a5 + 12a2a3a5 + 18a1a4a5 +

18a2
5

5
+

5a6

6
+ 5a2

1a6 +
5
2
a4
1a6

+
5a2a6

2
+ 20a2

1a2a6 + 5a2
2a6 + 20a1a3a6 + 6a4a6 + 5a1a7 + 10a3

1a7

+20a1a2a7 + 8a3a7 +
7a8

4
+

35
2
a2
1a8 + 7a2a8 + 14a1a9 +

21a10

5
+O(a11)

where each ak is given the degree k. For example the monomial a2
1a

2
2a4 has

degree 2 × 1 + 2 × 2 + 4 = 10. The meaning of O(a11) is that the degree of the
remaining terms is at least 11.
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